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Abstract 

With the advance of semiconductor technology, global on-chip wiring is becoming 
a limiting factor for the overall performance of large System-on-Chip (SoC) designs. In 
this thesis we propose a global communication architecture that avoids this limitation by 
structuring and shortening of the global wires. The communication architecture is used 
in a multiprocessor SoC for streaming DSP applications. The SoC is intended as a 
platform for wireless multimedia devices, such as PDAs, mobile phones, mobile 
medical systems, car infotainment systems, etc. 

To improve the performance of the communication in our SoC we use a Network-
on-Chip (NoC) architecture. A NoC provides the chip with a high-performance global 
communication infrastructure, at the same time structures the global on-chip wires and 
makes their electrical parameters predictable and controllable. By contrast, the bus 
solutions and the ad-hoc communications solutions used till now in SoC designs result 
in long wires with unpredictable electrical parameters and require costly design 
iterations for improving the communication performance.  

Our specific NoC uses virtual channel flow control and source routing to provide 
guaranteed communication services, as well as best effort services. Our NoC is the first 
on-chip network designed for a run-time reconfigurable system. It offers fast 
reconfiguration and requires low configuration overhead. Configuring a network path 
takes less than a millisecond and only costs a few bytes of data overhead. Such time and 
data overhead is affordable by the run-time reconfigurable SoC for the class of 
streaming applications we consider.  

Our NoC is particularly suitable for the specific traffic conditions created by 
streaming DSP applications. These applications have a simple structure and create 
simple traffic patterns but need a high data throughput. The main part of the traffic 
consists of data streams that require guaranteed services. However, our NoC also 
supports the small part of the traffic with fine granularity and irregular behaviour that 
requires only best effort services. 

The implementation area of our network router in 0.13 µm technology can be as 
small as 0.05 mm2 depending on the network design parameters. A network channel 
throughput of several Gbit/s can be achieved, which is enough to satisfy the system 
applications demands.  

 
The specific contributions of this thesis are: 
 

1. We propose a NoC architecture for a run-time reconfigurable 
multiprocessor SoC that supports streaming DSP applications. To the best 
of our knowledge, this is the first NoC targeted at a run-time reconfigurable 
SoC.  

 
2. We propose an architecture of a virtual channel router, which in contrast to 

conventional architectures is able to provide predictable communication 
services and has a lower implementation area cost than conventional 
architectures. 

 



 

 ii 

3. The predictable performance of our network simplifies the mapping of 
streaming DSP applications to our multiprocessor system. System 
reconfiguration can be done in linear time avoiding the NP-complete 
solutions common for statically scheduled real-time systems. Thanks to this 
linearity, system reconfiguration can be done at run-time. 
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Chapter 1  
 
Introduction 

 
 
 

1.1. Introduction 

In 1965, Intel co-founder Gordon Moore made a prediction, popularly known as 
“Moore’s Law”, which states that the transistor density on integrated circuits (IC) 
doubles about every two years [57]. For four decades silicon technology has been 
following this law and the number of transistors on a chip has been increasing 
exponentially. Today, it is commonly believed that from a purely technological 
perspective there are no obstacles to invalidate Moore’s Law in the next decade [93].  

The higher integration level achieved following Moore’s law allows more and more 
functionality to be accommodated on a chip. It is now possible to integrate a complete 
electronic system, including its peripherals and all interfaces, on a single die. Such a 
system is known as a System-on-Chip (SoC).  

Although there are no obstacles for the semiconductor manufacturing technology to 
continue reducing the IC feature size and increasing the IC integration level, there are 
several emerging IC design problems that prevent the full utilization of the technology 
potential. These problems are caused mainly by the smaller feature size and the high 
integration level. To continue exploiting the technology efficiently they must be 
overcome. This thesis addresses the main two of these emerging design problems: 

- the lower performance of the global on-chip wires, which make the global 
communications in large SoC designs a performance limiting factor.  

- the high design complexity resulting from the higher integration density, 
which makes SoC design an inefficient and time-consuming task.  

We address these problems in the context of a specific class of large SoC architectures – 
a multiprocessor SoC for streaming Digital Signal Processing (DSP) applications. The 
solution we propose for such systems is a Network-on-Chip (NoC) communication 
architecture. A NoC replaces the slow ad-hoc global on-chip wiring with a high 
performance communication infrastructure which facilitates structured modular system 
design and thus helps reducing the system design complexity.  

1.2. Network-on-Chip concept 

A NoC [17, 25, 45, 60] is a lightweight communication network that interconnects 
the system modules replacing the traditional on-chip bus. An example SoC employing a 
NoC is shown in Figure 1.1. The chip area is divided into square tiles. Each tile contains 
a system module (e.g., a processor, DSP, peripheral controller, memory subsystem, 
etc.). Such a system is referred to as a tiled system [25]. The NoC is built of routers 
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interconnected by network channels. Each tile is connected to a network router through 
a standard interface. Tiles communicate only by sending messages over the network 
through their interfaces.  

 

Figure 1.1: An example SoC architecture employing an on-chip network 

The NoC serves as a global communication infrastructure. It provides shared global 
interconnects that can be highly optimised since its development cost can be amortised 
across many designs. The NoC can provide short and structured global wires with well 
controlled electrical parameters. This eliminates time consuming design iterations for 
improving the signalling performance and enables the use of high performance circuits 
to reduce the communication latency and increase the bandwidth [41, 88]. The network 
supports parallel communication, so a high aggregate bandwidth can be obtained. 
Increasing the number of modules in the system also adds routers and channels; hence, 
the aggregate bandwidth scales with the size of the system. By offering a standard 
interface, the network facilitates the reusability and interoperability of modules. 

1.3. Application domain 

The NoC proposed in this thesis is used in the Chameleon project [39]. The 
Chameleon project aims to design a dynamically reconfigurable multiprocessor SoC for 
wireless multimedia systems. Potential application areas for such a platform are mobile 
multimedia devices (e.g., PDAs, mobile phones), mobile medical systems, on-board 
multimedia systems, smart sensors (e.g., remote surveillance cameras), etc. These 
systems have to meet challenging requirements such as: high performance, low power 
consumption, support for Quality-of-Service (QoS) and small size. As part of the 
system, the NoC must also contribute to these requirements. 
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Below we summarise the architecture of the SoC defined by the Chameleon project. 
We focus on the aspects relevant to the NoC design. We start with typical system 
applications and then present the system architecture. Later we briefly discuss the 
organization and the operation of the system.  

1.3.1. Streaming DSP applications 

The majority of applications in our application domain are streaming DSP 
applications. Examples of such applications are wireless baseband processing 
applications (e.g., HiperLAN/2, WiMax, DAB, DRM, DVB) and audio/video 
processing applications (e.g., MPEG codecs). Streaming DSP applications operate on 
streams of continuously arriving data items which are processed one by one in the order 
of their arrival and the results are released as an output stream.  

Typically, streaming DSP applications are structured as shown in Figure 1.2 [23, 
67, 87]. Two parts can be recognized in this structure – a processing part and a control 
part. The processing part consists of a number of processing blocks, Pi, arranged in a 
pipeline. The streamed data items pass through the pipeline and each processing block 
there applies some transformation on them. Typically, the transformations are 
mathematical algorithms, such as Fast Fourier Transforms (FFTs) or Discrete Cosine 
Transforms (DCTs), demanding intensive computation. Therefore, the processing part 
has high computational demands. Since data items pass through the pipeline 
periodically, the processing blocks show repetitive timing behaviour. Because many 
applications process streams in real-time, their processing part requires performance 
guarantees and the pipeline throughput has to be guaranteed. Hence, the processing part 
demands Quality-of-Service (QoS) guarantees. 

P1 P3 Pn

Control

Processing part

Control part

 

Figure 1.2: Typical structure of a streaming DSP application 

The control part of the application implements the control functions associated with 
adaptation and efficient operation. For example, in a wireless baseband processing 
application, the control part could monitor the error rate of a communication channel 
and change the modulation scheme to increase the throughput or to reduce the required 
computation power. The control part shows more reactive and irregular behaviour and 
requires little computation. As long as the control part only improves the application 
efficiency by adding adaptability, its performance is not critical to the real-time 
operation of the entire application [71]. Hence, the computation and communication in 
the control part do not require strict performance guarantees.  

Streaming DSP applications are computationally intensive, but they have a 
relatively simple structure. The aim of the Chameleon project is to provide a 
multiprocessor platform that exploits this simple parallelism naturally present in the 
pipeline structure of these applications. The potential of the simple pipeline structure to 
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simplify the design of predictable multiprocessor systems has also been recognized by 
others [49, 69]. The simple application structure simplifies a number of organisation 
issues in the Chameleon multiprocessor system. Because parallelism is naturally present 
in the application structure, partitioning the application into parallel tasks is 
straightforward. The simple data dependencies between the tasks ease the scheduling of 
applications on multiple processors. The running applications also generate simple 
communication patterns, which, as we shall see, help to achieve predictable 
communication behaviour. In general, the regular parallelism in streaming applications 
facilitates achieving a predictable and guaranteed operation of multiprocessor systems. 
Since the majority of applications running on our multiprocessor system are streaming 
DSP applications, this is the type of parallelism we consider.  

Running a streaming DSP application on multiple processors entails mostly 
streaming communication between the processors. The communication will last for the 
duration of the application, which for our application domain is estimated from seconds 
to hours, e.g., watching a film, making a phone call, using a wireless communication 
channel, etc. Therefore, the traffic in the system consists of semi-static data streams. 

The throughput of the data stream between the tasks in the processing part is 
application dependent. For more demanding applications the throughput is hundreds of 
Mbit/s. For example, a HiperLAN/2 receiver processes a stream demanding 512 Mbit/s 
[67]. The size of the data items is also application dependent, for example, it can be a 

14-bit audio sample from an analogue-to-digital converter (ADC) or 1024×1024×24-bit 
video frame. Since often streams are processed in real-time, this traffic requires 
performance guarantees.  

In contrast to the stream processing part, the communication in the application 
control part consists mainly of short control messages – several bytes of control or state 
information. To estimate the control traffic, we make the following assumption – each 
task in the processing part of a HiperLAN/2 receiver generates and receives a 10 Byte 
control message for every processed data item. This is an overestimation since most 
tasks do not communicate control messages for every data item. The control traffic 
generated by the application is then estimated at 10% of the total traffic, while the 
remaining 90% is streaming traffic. This is a rough estimation that gives the maximal 
amount of control traffic in the system. The estimation for other baseband processing 
applications and also for video applications gives similar results.  

Thus, we assume the following model for the system traffic generated by streaming 
DSP applications: 90% of the traffic consists of high throughput semi-static streams that 
require communication guarantees; 10% of the traffic consists of fine granular control 
messages that require no strict service guarantees. 

1.3.2. Heterogeneous tiled SoC architecture 

The SoC proposed in the Chameleon project has a tiled architecture (Figure 1.1). 
The tiles are heterogeneous reconfigurable processing elements (PE). A tiled 
architecture has a number of advantages. It can achieve high performance because it 
supports massive parallelism. It is a future-proof architecture because the tiles do not 
grow in complexity with technology; instead, the number of tiles on the chip grows. The 
energy efficiency is improved by switching off tiles that are not used. Defective tiles 
can be switched off and isolated, which makes the architecture fault-tolerant. 

In a heterogeneous system algorithms run on the type of PE which performs the 
required computation most efficiently. For example, some algorithms run more 



 

 5 

efficiently on bit-level reconfigurable PEs (e.g. pseudo random generators), some on 
word-level reconfigurable PEs (e.g. FIR filter, FFT). Hence, the type of the PEs 
building the system is chosen according to the needs of the application domain. 

Most of the tiles in our system are domain specific PEs, designed to perform fast 
and efficiently the DSP algorithms in the processing part of streaming applications. 
Because the DSP algorithms are mostly compute intensive and run periodically, multi-
tasking is inappropriate. Hence, the domain specific PEs are single task processors. One 
or a few tiles in the system are multi-tasking general purpose processors (GPP), to run 
the control part of the applications and also system control tasks.  

Each PE has its own local code and data memory. This reduces the need to access 
the shared global memories that can easily become a bottleneck in a streaming 
multiprocessor architecture. Since the communications between the PE and the shared 
global memory are reduced, the traffic and communication energy are reduced as well.  

The number of tiles that will fit on a chip is estimated by comparing the maximal 
chip size with the tile size. Assuming the maximal chip size for the current and the next 

generation technologies is 26×22=572 mm2 [93]. For a tile size estimation we use the 
area of the Montium tile processor [39, 40] – a domain specific processor for baseband 
processing applications. The area of the Montium tile processor together with its local 

memories (data and code) in 0.13µm technology is 2 mm2. Hence, more than 200 such 
tiles will fit on a single chip. This number will increase exponentially with the coming 
generations of semiconductor technologies. Therefore, it is not unrealistic to consider 
arrays of hundreds of tiles [14].  

1.3.3. Dynamic reconfiguration 

In a tiled architecture, each tile is reconfigured independently; the tile is the natural 
unit of partial reconfiguration. Unlike other state of the art systems, in our system the 
reconfiguration is done at run-time. While some tiles are performing tasks, unused tiles 
can be configured for new tasks. Therefore the system is dynamically reconfigurable. 

Dynamic reconfiguration is essential to support the dynamically changing demands 
of the application domain: the system operates in a constantly changing environment. 
The user demands change (e.g., starting/terminating applications), the environmental 
conditions change (e.g., available networks, wireless channel conditions) and the 
available power budget also changes (decreasing battery budget or connected to the 
mains). The set of running applications and tasks in the system adapts dynamically to 
these changes.  

The run-time reconfiguration modifies the system communication demands. For 
example, a new data stream may be needed or some of the old streams may be 
redirected or replaced. The NoC must be able to handle such dynamically changing 
traffic conditions. Run-time changes in part of the traffic must be possible without 
disturbing the rest of the traffic. The network reconfiguration time must be short enough 
to enable adequate system reaction time and reconfiguration must be transparent to the 
user.  

1.3.4. Centralised control 

Tiles are configured by configuration messages. Generally, configuration messages 
may come from any tile or from outside the system. However, during normal system 
operation, configuration messages are generated only by the one tile responsible for 
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system run-time configuration, control and management. This tile acts as a central 
authority that manages the other tiles by configuring them. Therefore our system 
operates with centralised control. Because the central tile performs mainly control 
oriented tasks, it is appropriate for this tile to be a GPP. 

The centralised control has the following advantages for our system. As a 
consequence of the centralized control, most of the tiles can be simple since they are not 
required to perform distributed control functions; all control functions are performed by 
the central tile. The central tile has a global view of the system and can distribute the 
system resources more efficiently. The central view facilitates also the QoS support and 
the system performance optimisation.  

Drawbacks attributed to centralised control are its poor scalability and unreliability. 
However, these disadvantages can be avoided to some extent by adding more GPP tiles 
to the system. As the system size grows, the central GPP tile can delegate some tasks to 
subordinate GPPs and avoid scalability problems. In case of a malfunctioning central 
GPP, its functions can be taken over by another GPP with similar capabilities. However, 
making the centralized control in our system reliable is beyond the scope of this thesis.  

The central tile starts and stops applications at run-time. To start an application, the 
central authority allocates and configures tiles for the application tasks. The procedure 
of tile allocation is referred to as application mapping. For the purpose of mapping, the 
applications are partitioned into tasks with appropriate granularity to run on tiles; this 
happens at compile time. At run-time, the mapping algorithm chooses the exact tiles 
where the task will run. By mapping communicating tasks on neighbouring tiles, the 
communication distances are reduced (or the communication locality is improved). As a 
result, the traffic and the communication energy are reduced.  

A mapped application task communicates only with some of the other tasks of the 
same application and eventually with the central authority. Thus, it is not expected that a 
tile addresses other tiles randomly. Therefore, during its operation a tile needs to know 
only a small, fixed set of addresses of the other tiles. 

The configuration messages also contribute to the system traffic. However, they 
form a small part of it. The configuration message size depends on the configuration 
space of the tile being configured. For domain specific tiles this space is usually several 
KBytes. For example, the total configuration space of the Montium tile is 2.6 KByte 
[39]. Tile configuration is required when an application is started. For applications such 
as wireless channels, video/audio players, etc., this may happen every several seconds 
or several hours. To estimate the amount of configuration traffic in the system, we use 
the HiperLAN/2 receiver again [67]. Assume that a new receiver is instantiated as an 
application every second (this is a strong overestimation, since it is not realistic that a 
new wireless channel is required every second). A HiperLAN/2 receiver is mapped on 
three Montium tiles [67]. To configure the new tiles, configuration messages of size at 
most 2.6 KByte are generated every second and these messages generate traffic of 20.8 
Kbit/s per tile. Compared to the per-tile throughput of the main data stream which is 
512 Mbit/s, the configuration traffic is estimated to be less than 0.005% of the total 
traffic. Thus, even with a strong overestimation, the fraction of configuration traffic in 
the system is negligibly small. Whether configuration messages require communication 
guarantees depends on whether the start-up time or adaptation time of an application is 
critical.  
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1.4. Semiconductor technology trends 

The design of a large SoC like the one we consider in this thesis faces problems 
related to the global on-chip wiring. These problems are a result of the reduced 
dimensions in the new generation of semiconductor technology. The reduced 
dimensions change the electrical parameters of wires and cause two problems referred 
to as the signal integrity problem and the clock distribution problem. Another problem, 
referred to as the productivity gap, relates to the need for a more productive design 
methodology in order to cope with the increasing design complexity. We discuss each 
of these problems in the subsequent sections.  

1.4.1. Signal integrity problem 

The basic components of a digital CMOS IC are gates and wires. The gates do 
signal switching while the wires transport signals. Every silicon technology generation 
reduces the dimensions of gates and wires and so changes the physical and thus their the 
electrical properties. While in the previous technology generations these changes did not 
lead to serious complications, now they are recognised as a problem that requires urgent 
attention [42, 55, 76].  

As the base fabrication technology shrinks to smaller dimensions, the gates become 
smaller and the wires become thinner and, as a result, the signal delay of gates and wires 
changes. Under scaling, the delay through a fixed-length wire (which is inversely 
proportional to the signal propagation velocity) increases, while the gate delay 
decreases. Thus, an increasing disparity between wire and gate delay is observed, 
assuming constant wire length. 

Typically, IC designs consist of a number of modules. As designs scale to the newer 
technologies, modules get smaller, the wires in the modules get shorter and the relative 
change in the delay of wires to the delay of gates in a module is modest. However, a 
chip can accommodate more and more modules, which are also interconnected by wires. 
These wires communicate signals across the entire chip and in contrast with the local 
module wires their length does not scale with technology. They stay long and their 
delay scales upwards relative to the gate delay. Thus, we must distinguish two types of 
wires, the signal delay of which is influenced differently by the scaling. We refer to 
these two types as local and global wires. 

If no special measures are taken, it might be expected that future ICs will consist of 
fast high-performance modules, interconnected by slow global wires. Thus the global 
wires will become a system bottleneck and will degrade the overall IC performance. 
Researchers agree that a solution to the problem can be provided by a new chip design 
methodology [42]. In the current methodology the chip wiring is automatically 
generated by the design tools and the designers cannot control the wires in the early 
design stages. The automatically generated wires are not structured and their electrical 
parameters, such as parasitic capacitance and crosstalk to adjacent wires, are difficult to 
predict early in the design process. This does not allow for optimisation of the global 
wires in early design stages and leads to many time consuming iterations in the late 
design stages.  

Instead of assuming the wiring as something hidden and automatically generated by 
tools, researchers agree that explicit structures that handle the inter-module 

communications must be included in the system architecture. Such an approach will 
make global wires structured and controllable; it will make the global communication 
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latencies explicit and predictable in an earlier design stage and will allow particular 
measures to be taken for their improvement. 

1.4.2. Clock distribution problem 

The changes in the electrical properties of wires also affect the on-chip global clock 
distribution. It is getting more and more expensive in terms of energy to distribute a 
precise clock signal to all modules on the chip. For example, in complex high 
performance chips, clock distribution may cost near 50% of the total energy 
consumption [79]. Hence, chip-wide synchronous operation is becoming expensive. The 
envisioned solution is the Globally Asynchronous Locally Synchronous (GALS) 
systems design framework [19, 58]. A GALS system is a system consisting of many 
synchronous modules, which, however, operate at their own local clock frequencies. No 
global clock distribution is required and the system should be considered globally 
asynchronous. The synchronous modules are often referred to as clock islands.  

Compared to a fully synchronous design, GALS can reduce the clock distribution 
power by 70% [38]. Another advantage of GALS is that the system modules are still 
synchronous and can be designed using standard tools and methodology. To complete 
the framework, asynchronous communication techniques for transporting data between 
the islands are required. 

1.4.3. Productivity gap 

As the integration level increases, the chip complexity grows. However, the chip 
complexity growth rate is about two times higher than the design productivity growth 
rate [46]. This means that the system design time will increase exponentially if the 
current design methodology and tools are not replaced by more productive ones. A 
complex design now can easily include 20-million logic gates. If such a design is started 
from scratch, it could easily take 200 engineers three to five years to architect, design, 
verify and build [82]. At the same time a common wisdom is that the product design 
cycle needs to be approximately one year to be competitive in the market.  

The disparity between the complexity and the productivity growth rates is usually 
referred to as productivity gap. To narrow this gap, more productive methodologies are 
needed. We can already observe that driven by this need the design methodology 
changes. Instead of designing systems from scratch, currently more and more systems 
are built from existing modules (re-use), e.g. CPUs from ARM and MIPS, common I/O 
blocks such as Ethernet MAC, USB, PCI, etc. It is expected that future systems will 
consist mainly of pre-designed standard IP (Intellectual Property) modules, adding only 
a few proprietary modules. Hence, future system design will consist mainly of 
integration of pre-existing IP modules. These systems will need an integration 
technology that facilitates modularity and IP interoperability. Adding, removing or 
changing an IP module should be possible without major disturbances of the rest of the 
design. This can be achieved by using standard global on-chip communication 
architecture offering a standard interface to the IPs. By reusing the communication 
architecture over many designs, design time and cost are saved. Since the 
communication architecture is optimised and with a fixed layout, time consuming 
iterations for optimising the global communications are avoided when a new SoC is 
designed or when an old is modified by replacing or adding modules.  
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1.4.4. Directions 

For continued benefit of the advances in silicon technology, all three design 
problems addressed above must be solved. We believe that the three problems can be 
solved in principle by an explicitly defined global communication infrastructure that 
structures and shortens the global wires and facilitates modular design.  

Current complex on-chip systems are also modular, but most often the modules are 
interconnected by an on-chip bus. The bus is a communication solution inherited from 
the design of large board- or rack-systems in the 1990’s. It has been adapted to the SoC 
specifics and currently several widely adopted on-chip bus specifications are available 
[89-91, 95]. 

While the bus facilitates modularity by defining a standard interface, it has major 
disadvantages. Firstly, a bus does not structure the global wires and does not keep them 
short. Bus wires may span the entire chip area and to meet constraints like area and 
speed the bus layout has to be customised [78]. Long wires also make buses inefficient 
from an energy point of view [9]. Secondly, a bus offers poor scalability. Increasing the 
number of modules on-chip only increases the communication demands, but the bus 
bandwidth stays the same. Therefore, as the systems grow in size with the technology, 
the bus will become a system bottleneck because of its limited bandwidth.  

The current solution for the bus performance and scalability problems is bus 
partitioning. A bus is partitioned into several busses (most often two), connected trough 
bridges. A hierarchy may be introduced between the busses, e.g. a high-performance 
system bus and a low-performance peripheral bus. While the partitioned bus solution is 
satisfactory for the current system sizes (up to tenths of IPs) it does not help for 
structuring the chip layout.  

Although the bus is the common communication solution in the current SoC, its 
future application is questionable because a bus is unable to solve the design problems 
foreseen for the future semiconductor technology. Therefore a communication paradigm 
shift is required. A new SoC communication solution that addresses the design 
problems is needed.  

We believe that an appropriate solution can be found in the communication concept 
used in the 90’s for the interconnection of processor arrays in multi-computers. In 
multi-computers many processors are interconnected by a communication network. It is 
proposed to use such a network to interconnect the modules in a SoC [25]. This concept 
has become popular as a Network-on-Chip (NoC). The cost of applying an 
interconnection network on-chip is the area overhead due to new system components 
(routers) needed to support the network. The system organisation must also take into 
account the network and may incur additional network exploitation costs in terms of 
configuration and time overhead.  

1.5. Objectives 

The arguments presented suggest that NoC structures have the potential to solve the 
key design problems in the future semiconductor technologies and motivate us to use a 
NoC as an on-chip communication infrastructure in our SoC design. However, there are 
still many open questions which have to be answered in order to show that the NoC 
concept is feasible. For example, to design a NoC, one has to decide which particular 
network techniques to employ. It is not known what performance can be achieved by a 
NoC and whether it can satisfy the system demands. It is not known whether the costs 
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of employing the NoC are acceptable. It is still not clear whether the network can 
support the overall system operation requirements.  

These are the questions we address in this thesis. Our objective is to define an NoC 
architecture, evaluate its performance and estimate its implementation cost. Therefore 
we define the following research questions: 

 
1. What network techniques are appropriate to minimize the network overhead 

while maintaining satisfactory performance?  

 
This question addresses the design choices that have to be made. The design 

objective is to achieve a network performance that satisfies the system demands. We 
consider the typical network performance metrics throughput and latency, but also the 
services the NoC can provide e.g., guaranteed services or best effort services. The 
design constraint is given by the maximum acceptable network overhead. We consider 
two types of overhead – implementation and exploitation overhead. The implementation 
overhead comprises all the costs due to the physical implementation of the network; 
these are the area cost and the static energy cost. The exploitation overhead comprises 
all the costs for network support and exploitation, e.g. network configuration costs, 
costs for sending data over the network (dynamic energy cost and data overhead), etc.  

The design choices are made on the basis of comparison between the relative cost 
and performance of the considered techniques and not the actual implementation 
performance and cost. For example, latencies are compared in terms of clock cycles but 
it is not taken into account what the maximal achievable operating frequencies are. 
Therefore, to evaluate the network we have to find its actual cost and performance and 
that leads to our second question: 

 
2. What is the overhead and the performance of a NoC architecture?  

 
This question addresses the evaluation of the implemented network and its answer 

requires estimation of all the costs the NoC employment entails. To estimate the 
exploitation overhead it is necessary to know exactly how the network is used by the 
system. Hence our third question is: 

 
3. What is the optimal use of the NoC? 

 
This question addresses the overall system operation and all the interactions 

between the NoC and the system. It is a difficult question to be answered in detail since 
it involves many aspects of the system operation which are beyond the scope of the 
thesis. However, we propose a system organization scenario that supports the NoC 
communication concept as much as possible.  

 
In general, this thesis presents a proof of concept of the NoC idea. We define and 

evaluate an instance of a NoC architecture for our tiled Chameleon SoC. The NoC is not 
a general purpose one but aimed to support the streaming DSP applications in our 
system. 
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1.6. Contributions 

The scope of our work is given by the Chameleon system [39, 71]. In this scope we 
provide a feasible NoC solution. The specific contributions of this thesis are: 

 
1. We propose a NoC architecture for a run-time reconfigurable 

multiprocessor SoC that supports streaming DSP applications. To the best 
of our knowledge, this is the first NoC targeted at a run-time 
reconfigurable SoC.  

 
2. We propose an architecture of a virtual channel router, which in contrast to 

conventional architectures is able to provide predictable communication 
services and has a lower implementation area cost than conventional 
architectures. 

 
3. The predictable performance of our network simplifies the mapping of 

streaming DSP applications to our multiprocessor system. System 
reconfiguration can be done in linear time avoiding the NP-complete 
solutions common for statically scheduled real-time systems. Thanks to 
this linearity, system reconfiguration can be done at run-time. 

 

1.7. Structure of the thesis and related publications 

The rest of the thesis is organized as follows. In Chapter 2, we review 
communication network techniques and select those suitable for our NoC 
implementation. We choose to use a virtual channel network. In this chapter we also 
discuss some recent work on NoC design.  

In Chapter 3, we discuss the possible architectural solutions for a virtual channel 
router. We study the influence of the architecture on the router performance and identify 
those architectures that can provide predictable communication services. Finally, we 
propose an approach for providing guaranteed communication services at network level. 
Major parts of this chapter have been presented at the IEEE International Symposium 
on VLSI 2006 [6]. 

Implementation details about the selected router architecture are presented in 
Chapter 4, in which we propose an implementation that simplifies the design and 
reduces the overall router area. Implementation results are also presented there. Major 
parts of this chapter have been presented at the IEEE International System-on-Chip 
Conference 2004 [5] and at the EUROMICRO Symposium on Digital System Design 
2004 [1] 

In Chapter 5, the proposed approach for providing guaranteed services is evaluated 
with a model of the expected traffic in the system. Also the overhead for applying the 
approach is estimated. Major parts of this chapter have been presented at the 
International Workshop on Applied and Reconfigurable Computing 2006 [7]. 

Chapter 6 shows how performance guarantees are given to streaming DSP 
applications. Major parts of this chapter have been presented at the EUROMICRO 
conference on Digital System Design 2005 [4] and at the Communicating Process 
Architectures Conference 2005 [8]. 

Chapter 7 gives conclusions and recommendations.  
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Chapter 2  
 
Background and related work* 

Multiprocessor networks have been studied for more than 

two decades and a solid foundation of design techniques is 

available. In this chapter we review the main techniques for 

interconnection networks. We also present some recent 

network-on-chip solutions and discuss the techniques they 

employ. 

2.1. Introduction 

The objective of this thesis is to define a Network-on-Chip (NoC) architecture for 
the tiled multiprocessor System-on-Chip (SoC), described in Chapter 1. The task of the 
NoC is to interconnect a set of processing tiles, allowing them to exchange data and to 
operate as an integral system. Building networks of processors is not a new research 
topic. Such networks have been investigated for more than two decades in the domain 
of parallel computing and are known as Multiprocessor networks (MP networks). As a 
result, a solid foundation of design techniques for MP networks is available in the 
literature. Since by nature on-chip networks are MP networks, MP network techniques 
can be adopted for building NoC architectures. However, on-chip networks have their 
specifics, which are result of the different realization technology and the different 
requirements of the multiprocessor system and the applications running on the system. 
These specifics must be taken into account when adopting MP network techniques. 

This chapter consists of three parts. In the first part we discuss the NoC specifics in 
comparison with MP networks. In the second part we give an overview of the general 
interconnection network techniques, focusing on the techniques used for building MP 
networks. We discuss the techniques in the context of our tiled multiprocessor system. 
Our objective is to identify those of them which are most suitable for use, directly or 
after modification, in our NoC and also to identify potential gaps which require 
development of new specific techniques. We also introduce terminology and notation 
used in the other chapters. We adopt the terminology and notation used by Dally and 
Towles [27].  

The third part of this chapter is devoted to existing NoC solutions. We discuss only 
the most mature solutions and techniques that are relevant to this thesis. The solutions 
are compared mostly qualitatively; the quantitative comparisons are restricted to chip 
area and clock frequency (when this information is available). We restrict our 
quantitative comparisons, because often NoC solutions are targeted at different systems, 
address different traffic types and pursue different goals, or detailed information about 

                                                           
* Major parts of this chapter have been presented at the PROGRESS Embedded Systems Symposium [2]. 
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the system is not available. Therefore, detailed quantitative comparison cannot be made 
fairly.  

2.2. NoC characteristics 

To establish criteria on which we can assess the available MP network techniques, 
we first define the specifics of the NoC. The first specific criterion that distinguishes a 
NoC from MP networks is the implementation technology. While MP networks are used 
for inter-chip or inter-board communications, the NoC is entirely built on the chip. 
Inter-chip communication requires signals to go off chip on pins. Since the number of 
pins available on the chip is limited to less than 1000, the number of inter-chip signals 
to be used for communication is also limited. In contrast, on-chip networks do not have 
this limitation because they are built entirely on the chip and use only on-chip wiring 
resources. The number of the on-chip wires available for communication signals can go 
far beyond the pin limitation of the inter-chip networks. For example, in 130 nm 
technology [92], launched in 2002, the minimum global wiring pitch is 565 nm, so there 
can be up to 1770 wires crossing an edge of length 1 mm on each metal layer. In 70 nm 
technology [93], projected in 2006, the minimum global wiring pitch is 250 nm, hence 
there can be up to 4000 wires crossing an edge of length 1 mm on each metal layer. 
Hence, on-chip networks have extensive wiring resources at their disposal compared to 
the traditional MP networks.  

The main limitation to which the on-chip network has to conform is the chip area. 
While in the MP networks each router (the building block of a network) is placed on a 
separate chip [26, 74] and utilizes the entire chip area, all routers of an on-chip network 
are placed on a single chip. The NoC is just part of the implemented SoC and utilizes 
only part of the available chip area. The area utilized by the NoC routers should be 
reasonably small compared to the area used by the computational resources. The 
computational resources in our SoC are the processing tiles. Each tile is accompanied by 
a network router. As an estimate, the area of the processing tile proposed by Heysters 
[39] is 2 mm2 in 130 nm technology. If for a maximal acceptable size for a router we 
assume 1/10 of the tile area, then the router area should be less than 0.2 mm2. 

Another NoC specific is the requirement for a simple and regular layout. The wires 
used for network signalling form a large part of the global on-chip wiring. To cope with 
the signal integrity problem, described in the introduction chapter, the global wires must 
be short and structured. By employing a network topology that results in a simple and 
regular layout, a NoC has the potential to provide wiring with well controlled 
parameters, predictable at an early design stage and easy to optimize. Thus, the regular 
layout helps in coping with the signal integrity problem. 

Since the integration level provided by new semiconductor technologies increases 
exponentially following Moore’s law, more and more tiles will fit on a single chip. 
Thus, the network size is also expected to grow. To provide for an easy transition 
between technology generations, the network must be scalable, such that it can be 
extended with a minimal cost and redesign efforts. 

At a functional level the major difference between MP networks and the NoC is the 
demand for quality-of-service (QoS). In traditional multiprocessor systems, like 
supercomputers, the focus has been mostly on high performance, while QoS has not 
been an active research topic. For that reason there is a lack of MP network techniques 
for providing QoS. However, recently multiprocessor systems have appeared in 
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consumer products, such as mobile phones, TV/video sets, etc. [94]. Many program 
applications in these devices require QoS, and that raises the demand for QoS support.  

In summary, the characteristics that distinguish the on-chip networks from the 
traditional MP networks are: 

- large amount of available wiring resources  
- area limitation for the router size  
- need for regularity of the network layout 
- need for scalability 
- demand for QoS 

2.3. Interconnection networks 

In this section we give an overview of general techniques for the design of 
interconnection networks where we focus mainly on MP network techniques. The 
techniques are discussed within the perspective of the NoC context, in order to assess 
how appropriate they are for a NoC implementation.  

According to the definition given Dally and Towles [27], an interconnection 
network is a programmable system that transports data between terminals. Here 
terminal refers to a general source/sink of data that requires communication services. 
Such a system is shown in Figure 2.1. The figure shows six terminals, T1 through T6, 
connected to the network. When a terminal wishes to communicate data to another 
terminal, it sends a message containing the data over the network. The network delivers 
the message to the destination terminal. The network is programmable in the sense that 
it can make different connections at different points in time. The network in the figure 
may deliver a message from T3 to T5 in one cycle and use the same resources to deliver 
a message from T3 to T1 in the next cycle. The network is a system because it is 
composed of many components: buffers, channels, switches and control that work 
together to deliver data.  

Interconnection network

T1 T2 T3 T4 T5 T6

 

Figure 2.1: Functional view of an interconnection network 

Networks meeting this broad definition may occur on many scales. However, here 
we restrict our attention only to small scale networks and MP networks, relevant to our 
SoC architecture. These networks have tens to hundreds of terminals positioned close to 
each other (on a board or on a chip). The terminals are processors, memories or other 
system modules. 

A network is built out of switching elements interconnected by physical channels, 
also called links. A switching element has a number of input and output ports. Its main 
function is to forward data by establishing non-conflicting connections between input 
and output ports. Depending on the type of network the switching elements are referred 
to either as switches or routers.  
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The physical channels are sets of wires interconnecting the ports of neighbouring 
routers and transporting signals between them. The physical channels form the medium 
that transports information in the network. The switching elements allow physical 
channels to be time-shared between data from different source and destination pairs. In 
some networks sharing may cause data blocking. To prevent loss of blocked data, the 
switching elements may provide storage space for temporal data buffering. The buffers 
may also be shared, since at different times they may store data from different sources. 
Besides the physical channels, buffers are the other important network resource.  

2.3.1. Direct and indirect networks 

A network where every switching element is directly connected to a terminal is 
called a direct network. An example of a direct network is given in Figure 2.2.a. The 
circles there represent pairs of terminals and switching elements, often called nodes. In 
contrast, a network where not every switching element is connected to a terminal is 
called an indirect network. An example of an indirect network is given in Figure 2.2.b. 
The circles represent terminal nodes and the squares represent switching elements. In 
indirect networks there is a natural separation between the terminals and the switching 
elements, while in direct networks the separation is a matter of preference.  
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a) A 3-ary 2-cube b) A 2-ary 3-fly  

Figure 2.2: An 8-node mesh network and an 8-node butterfly network as example of 
direct and indirect networks 

In the topology of the tiled multiprocessor SoC architecture considered in this thesis 
(see Chapter 1), the tiles that construct the system are arranged into a two-dimensional 
array on the plane of the chip. Each tile has to be connected to the on-chip network and 
will play the role of a terminal. Furthermore, the network should provide simple and 
regular global on-chip wiring. The simplest and most natural way to satisfy these 
requirements is to add a switching element to each tile and to interconnect the 
neighbouring switching elements in a grid. This will result in a direct network topology. 
Therefore, we focus only on direct network topologies.  

2.3.2. Performance of interconnection networks 

The basic metrics of the network performance are throughput and latency. 
Throughput is the rate at which data is delivered by the network, in [bit/s]. Throughput, 
also referred to as accepted traffic, should be clearly distinguished from the offered 

traffic. The network cannot always accept all the traffic generated by the data sources.  
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The ideal throughput, θideal, is the theoretical bound on the network throughput 
assuming that the traffic is perfectly balanced over the physical channels. However, this 
bound is rarely, if ever achieved because the network techniques used in practice cannot 
provide full network utilization, e.g. the routing cannot perfectly balance the traffic over 
the channels, the flow control results in idle channels because of resource dependencies, 

etc. Hence, the network saturates at throughput θs, θs<θideal, referred to as saturation 

throughput.  
Latency is the time required for a data item to traverse the network, from the time 

the first bit of data arrives at the input port of the network to the time the last bit is 
received at the output port of the network. Often latency is estimated under a zero-load 
assumption; that is, data never contends for network resources. Thus zero-load latency, 
T0, gives a lower bound on the data latency in the network. Figure 2.3 shows an 
example graph depicting a typical dependency between the traffic load offered to the 
network and the data latency.  

s ideal

T0

Offered traffic [bit/s]  

Figure 2.3: Typical dependency between offered traffic and data latency in a network 

2.3.3. Network topologies 

The physical structure of a network can be represented as a graph, called a network 

graph. The vertices in the network graph represent switching elements and the edges 
represent physical channels. The arrangement of the switching elements and channels is 
represented by the topology of the network graph, called the network topology.  

Definitions 

Since a network topology is represented through graphs, graph terminology is 
adopted when reasoning about networks. An interconnection network is formally 
defined as a directed graph I=(N,C), where N and C are the set of nodes and the set of 
channels in the graph. The degree of a network node is the number of channels 
connected to the node. When all the nodes in the network have the same degree, the 
network is called degree regular.  

A path in the network is a sequence of nodes and channels. More formally, a path is 

a sequence <n0, n1, …nl> of nodes, such that ni∈N for i∈[0..l], and edges (ni, ni+1)∈C 

for i∈[0..l-1]. Sometimes it is more convenient to express the path in terms of channels. 
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The path is then a sequence <c0, c1, …cl-1> of channels, such that ci∈C for i∈[0..l-1] and 

destination(ci-1)=source(ci) for i∈[1..l-1]. The functions source(ci) and destination(ci) 
give the source node and the destination node of the channel ci.  

The length of a path equals the number of channels (ni, ni+1) traversed by the path. 
The number of traversed channels is also referred to as the hop count; a hop is the unit 
in which the network distances are usually given. Paths are also referred to as routes. A 
path between two nodes s and d is a network path <n0, n1, …nl> such that n0=s and nl=d. 
The distance between two nodes s and d is the length of the shortest path between s and 
d. The maximal distance D over all pairs of nodes in the network is called the diameter 
of the network – a characteristic often used for assessment and comparison of network 
topologies.  

A cut of a network, C(N1, N2), is a set of channels that partitions the set of all nodes 
N into two disjoint sets, N1 and N2. Each element of C(N1, N2) is a channel with a source 
in N1 and destination in N2 or vice versa. The number of the channels in the cut is |C(N1, 
N2)| and the total bandwidth of the cut is: 

(2.1) 
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where bc is the bandwidth of channel c. 
A bisection of a network is a cut that partitions the network nearly in half, such that 

|N2|≤|N1|≤|N2|+1. The channel bisection, BC, of a network is the minimum channel count 
over all bisections of the network: 

(2.2) ( )21,min NNCB
bisections

C = . 

The bisection bandwidth, BB, of a network is the minimum bandwidth over all 
bisections of the network: 

(2.3) ( )21,min NNBB
bisections

B = . 

For networks with uniform channel bandwidth bc=b for every c∈C, the bisection 
bandwidth is BB=bBC. For simplicity, in the following sections we refer to the channel 
bisection only as bisection unless explicitly stated otherwise.  

A topology characteristic related to the bisection is the network connectivity. A 
network is called k-connected when between any pair of nodes there exist at least k 
paths that do not share other nodes than the source and the destination (internally vertex 
disjoint paths). The maximal k for the network is called the connectivity of the network. 
Since the connectivity corresponds to the path diversity between the nodes, it is used as 
a measure of the fault-tolerance of the network. On the other hand, it can also be used as 
a network performance measure related to the bisection.  

Requirements 

The selection of the network topology will be driven by the following criteria: 
- Small and fixed degree. The degree of a node determines the number of ports 

of the corresponding switching element. Hence, node degree influences the 
switching element complexity and area cost. A small degree reduces the cost. 
Degree regularity allows for uniform design of the switching elements. 
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- Simple and uniform layout. Whatever the topology, the network is embedded 
in the plane of the chip. The layout of the embedded network defines the 
global on-chip wiring, which has to be as simple and uniform as possible in 
order to lessen the signal integrity problem.  

- Small diameter. Networks with a smaller diameter have shorter distances and 
therefore lower communication latency. 

- Simple routing. The network topology influences the algorithm used for 
searching routes in the network. Regularity and simplicity of the network 
topology can simplify the routing algorithm 

- Scalability. Following Moore’s law, the number of system components on-
chip is expected to increase exponentially with the technology generations in 
the next 10 years [93]. Thus, the number of nodes in the on-chip network will 
increase. To provide easy transition between technology generations, the 
topology should support extension (an increase in the number of nodes) at 
minimal cost and redesign efforts. 

- Fault tolerance. Defects in the manufacturing process may cause 
malfunctioning or failure of network components (channels or routers) in 
newly produced chips. To reduce the impact of such defects on the production 
yield, it is desirable that in the presence of a reasonably small number of 
faulty components, the network is still operable. During its operation, the 
network should be able to avoid the faulty components by using alternative 
paths. The presence of alternative paths is indicated by the connectivity of the 
network; hence, topologies with higher connectivity are preferable.  

Having motivated our requirements for a topology, we continue by giving an 
overview of direct network topologies most commonly used in MP networks.  

Tree topologies 

As the name suggests, the tree topology interconnects the network nodes in the 
form of a tree. Each node (except the root) has one ancestor and k descendants. A tree in 
which every node, except the leaves, has exactly k descendants is a k-ary tree. Tree 
networks have a small diameter, O(logkN), N being the number of nodes in the network, 
but their bisection and connectivity are small, only 1; there is only one path available 
between any pair of nodes. Therefore, the network is not fault-tolerant. To improve the 
fault tolerance, ringed trees have been proposed [29]. As shown in Figure 2.4.a, a 
ringed tree connects the nodes of each stage of the tree in a ring.  

b b b bb b b b

2b 2b 2b2b

4b 4b

a) A Ringed tree b) A Fat tree  

Figure 2.4: Tree topologies 
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The small bisection of the trees also causes performance problems. The nearer to 
the root a channel is, the more paths use it. Therefore, the channels nearer to the root 
have a higher load and become a bottleneck. To overcome this problem, fat-trees have 
been proposed [51]. In fat-trees, channels that are nearer to the root have higher 
bandwidth. For example, in the fat-tree shown in Figure 2.4.b, the channels connecting 
the leaves of the tree have bandwidth b, the channels connecting the next stage have 
bandwidth 2b, and so on. While fat-trees overcome the tree performance problem, they 
introduce irregularity in the physical design of the switching elements and do not 
improve the fault-tolerance.  

Star topologies 

A star graph [11] has n! nodes labelled by permutations of n different symbols. 
Each node in the graph is connected to n-1 other nodes, with labels that are obtained 
from the current node label by interchanging the first symbol and one of the other 
symbols. An example of a four-star graph (n=4) is given in Figure 2.5. The nodes are 
labelled by permutations of the symbols {1, 2, 3, 4}. Labels are shown only for one 
node and its three neighbours. The border edges labelled by the same letter are 
connected, but for clarity of representation the connecting edges are not shown. 

The degree of an n-star graph is n-1 and the diameter is 3(n-1)/2. Although, the 
degree and the diameter of star graph are lower than the degree and the diameter of 
mesh and torus network (discussed below) of similar sizes, the routing is more 
complicated and the node degree depends on the network size.  

 

 

Figure 2.5: An example of star graph 

 
 

Torus and mesh topologies 

Among the direct network topologies, torus and mesh networks are the most 
popular, well studied and often used for practical implementations. Torus networks are 
characterised by their radix k and the number of dimensions n. An n-dimensional radix-
k torus, also referred to as a k-ary n-cube, arranges N=k

n nodes in a n-dimensional cube 
with k nodes in each dimension. Each node is assigned an n-digit radix-k address {an-1, 
… a0}. The ith digit in the address, ai, represents the node position in the ith dimension. 
A node is connected by a pair of channels (one in each direction) to all nodes with 
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addresses that differ by ±1(mod k) in exactly one address digit. This requires 2 channels 
in each dimension per node or 2n channels. Tori are degree regular, their diameter is 

nk/2 hops and the bisection is 4N/k=4k
n-1. An example of a 4-ary 2-cube is given in 

Figure 2.6.a. The long channels connecting the nodes on the opposite edges of the node 
array are usually referred to as wraparound channels.  

A mesh network is a torus network with wraparound channels removed. Each node 

in a mesh connects to all nodes that differ by ±1 in exactly one address digit. Figure 
2.6.b gives an example of a 4-ary 2-mesh. The mesh network has the same node degree, 
but half the bisection channels of a torus with the same radix and dimension. The 
bisection is 2N/k=2k

n-1, and the diameter is n(k-1) hops. Removing the wraparound 
channels destroys the symmetry of the torus. This can cause load imbalance, as the 
demand for the central channels can be significantly higher than for the edge channels. 

 

Figure 2.6: Torus and mesh networks 

A k-ary 1-cube is simply a ring of k nodes. The 2-ary n-cube networks form a 
subclass of tori called hypercubes or binary cubes. An example of a 3-dimensional 
hypercube is given in Figure 2.7.a. In a hypercube network every node is connected to n 
other nodes. A hypercube keeps the hop count small with an increasing number of 
nodes. However, increasing the number of nodes increases the number of dimensions n 

and the node degree. For MP networks the higher degree may cause a packaging 
problem. Figure 2.7.b presents a hypercube modification called cube-connected cycles 
[65] for which the node degree remains 3, independently of the number of dimensions. 
It is derived by replacing the n-degree nodes in the hypercube by a ring of n nodes.  

 

Figure 2.7: Binary cube and cube-connected cycles 
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Torus and mesh networks of low dimension are attractive for several reasons. The 
regular topological arrangement is well matched with the two-dimensional arrangement 
of the tiles on the chip. At low dimensions tori have uniformly short wires allowing 
high speed operation without repeaters (the wraparound channels are an exception 
which can be avoided by folding, discussed later). Logically minimal paths in tori are 
almost always physically minimal as well. The wiring complexity and performance of 
torus networks is studied by Dally [22]. The results show that low-dimensional 
networks are advantageous compared to high-dimensional networks. In particular, with 
up to 1024 nodes a 2-dimensional topology provides lower latency and higher 
throughput than networks of higher dimensions with the same bisection. Networks of 
many dimensions require more and longer wires than low-dimensional networks.  

Besides performance, wire regularity is another major concern when choosing a 
network topology. The network topology embedded in the plane of the chip determines 
the structure of the global on-chip wiring. To solve the signal integrity problem, 
discussed in the introduction chapter, the global on-chip wires must be as uniform and 
simply structured as possible. Figure 2.8 compares the wiring of two cubes containing 
the same number of nodes, but of different dimensions. Figure 2.8.a shows a 3-ary 4-
cube embedded in a plane. Although the required wiring is regular, it is complicated, 
wires of different length are required and it would be practically difficult to keep it well 
structured and optimised. On the other hand, the two dimensional cube shown in Figure 
2.8.b has a simple wiring structure which is intuitive and easy to handle. Similar 
observations can be made for meshes of low and high dimension. Thus, the performance 
and wiring issues suggest that low-dimensional networks are advantageous for on-chip 
implementation.  

b) A 9-ary 2-cubea) A 3-ary 4-cube embedded in the plane  

Figure 2.8: Wiring of cubes of different dimensions 



 

 23 

b) A folded torusa) A folded ring  

Figure 2.9: Folding cubes in order to avoid wraparound channels 

In two-dimensional cubes the wraparound channels may cause practical problems, 
because they are long, require repeaters and are slower than the other channels. The 
wraparound channels can be avoided by folding the network as shown in Figure 2.9.b 
[22]. The folding keeps the graph intact but reshuffles its nodes in the plane such that 
the wraparound channels are avoided at the expense of doubling the length of the other 
channels. The idea of folding is illustrated in Figure 2.9.a by folding a ring.  

2.3.4. Flow control 

The terminals (the processing tiles in our system) exchange data in the form of 
messages. The size of the messages is entirely determined by the applications and the 
storage space available in the terminals. However, the unit of information that networks 
work with is the packet. Packets encapsulate the transported data adding to it some 
control information that is used by the network. The packet length may be fixed or 
variable, which is determined by the network buffers capacity and the employed flow 
control mechanism. When there is a limitation on the packet length, it may be necessary 
to split the messages when injected in the network and later reassemble them on the 
receiving side.  

When transmitted over the network, packets are divided into smaller fixed size data 
units called flow control digits, or flits. A flit is the smallest unit of information 
recognized by the flow control. Finally, the unit of information that can be transferred 
across a physical channel in a single cycle is called physical digit, or phit.  

Flow control determines how network resources, such as channel bandwidth and 
buffer capacity are allocated to packets traversing the network. A good flow control 
method allocates these resources in an efficient manner so the network achieves a high 
fraction of its ideal throughput and delivers packets with low latency. The flow control 
can be classified as a buffered or bufferless flow control. Bufferless flow control is the 
simplest form of flow control that uses no data buffering and simply acts to allocate a 
channel bandwidth to competing packets. Buffered flow control is a more complicated 
form of flow control that relies on buffering space in the routers, but it also more 
efficient in distributing the network resources between packets. We describe each form 
of flow control in the subsequent sections. 
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Bufferless flow control 

This type of flow control does not use buffer space for storing packets in the 
routers. Therefore, bufferless flow control cannot hold the packets at a place, but has to 
ensure they advance every cycle. When a packet cannot advance because the next 
channel is occupied, the packet is either dropped or misrouted. Thus, we distinguish two 
types of bufferless flow control: dropping flow control and misrouting flow control. 

Dropping flow control drops from the network the packets that cannot advance 
because of blocking. The dropped packets have to be retransmitted, which requires that: 
i) a copy of the packet is stored at the sending terminal; ii) the flow control provides a 
mechanism for notifying the sending terminal about the packet dropping. Two methods 
are used for notifying the senders of the dropped packets. The first one relies on explicit 
negative acknowledgement (explicit NACK), while the second simply uses a timeout.  

A time-space diagram of dropping flow control with explicit NACK is given in 
Figure 2.10. As before, the figure shows a 5-flit packet being sent along a 4-hop route. 
The packet consists of a header (H), body (B) and a tail (T). The vertical axis shows the 
forward (F) and the return (R) directions of the four channels (0-3) traversed by the 
route. In the example, the first transmission of the packet is unable to allocate channel 3 
and the packet is dropped. A NACK signal (N) is sent back to the sender to initiate a 
retransmission. The NACK signal follows backwards the path reserved for the dropped 
packet. The retransmission succeeds and the receiver sends an acknowledgement (A) to 
the sender to notify that the packet has been received. With explicit NACK, flow control 
channels are allocated to a packet by the packet header flit (H) and are released by the 
ACK (A) or NACK (N) signals, which follow the return route reserved by the header 
flit. The role of the tail (T) is to notify the receiver that the whole packet is successfully 
received.  

 

Figure 2.10: Time-space diagram of dropping flow control with explicit NACK 

The second method for notifying a sender about packet dropping is by using a 
timeout. A time-space diagram of a dropping flow control with timeout is given in 
Figure 2.11. The figure shows a 5-flit packet being sent along a 4-hop route. The packet 
fails to acquire channel 3 on the first transmission. In this case, however, a NACK is not 
sent. Instead, the packet transmission continues across channels 0, 1 and 2. On each of 
these channels the tail flit (T) deallocates the resources held by the packet as it leaves 
the node. Thus channels 0, 1, and 2 become free during cycles 4, 5 and 6, respectively. 
After a timeout elapses without the source having received an acknowledgement, the 
source terminal retransmits the packet starting at cycle 12. This time the packet is 
successfully received. The receiving terminal sends an acknowledgement which arrives 
at the sender at cycle 23. Since no resources are reserved for the packet after the tail flit 
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passes, the acknowledgement must compete for reverse channels and may it self be 
dropped. In this case the packet will be retransmitted even though it was correctly 
received the first time. The timeout length equals the time needed for the packet to be 
received and the ACK to propagate back to the sender. 
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Figure 2.11: Time-space diagram of dropping flow control with timeout 

Although simple, dropping flow control is inefficient because it uses bandwidth for 
transmitting packets that might later be dropped.  

Misrouting flow control sends blocked packets in alternative directions instead of 
dropping them. In this case, there must be sufficient path diversity and an appropriate 
routing mechanism to route the packet to its destination from this point. While 
misrouting does not drop packets, it wastes bandwidth by sending packets in wrong 
directions. In some cases, this leads to instability; the throughput of the network drops 
after the offered traffic exceeds certain level. When misrouting is used, livelock is an 
issue – if a packet is misrouted too often, it may never come close to its destination. 

Circuit switching is a form of bufferless flow control which operates by first 
allocating channels to form a circuit from source to destination and then sending one or 
more packets along the circuit. When no further packets need to be sent, the circuit is 
deallocated. The process involves four phases illustrated by the time-space diagram in 
Figure 2.12. During the first phase a request (R) propagates from the source to the 
destination and allocates channels. In a case of contention the request waits in the 
switch until the requested channel is freed. In this example no contention is 
encountered. After the circuit is allocated, an acknowledgement (A) is returned to the 
source during the second phase. Once the acknowledgement is received, the circuit is 
established and can handle an arbitrary number and size of data packets with no further 
control. In the example, two 4-flit data packets are sent and each is followed by three 
idle cycles. When no further data needs to be sent, a tail flit (T) is sent to deallocate the 
channels used by the circuit. 

 

Figure 2.12: Circuit switching  

Circuit switching differs from dropping flow control in that if the request flit is 
blocked, it is not dropped but held in place. The switches can store a request but not 
data.  

Circuit switching is simple to implement, but it also has weaknesses: high latency 
and low throughput. At first, time is needed for establishing a circuit before sending a 
packet. The period of time the circuit is reserved is longer than the time it is used.  
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Time division multiplexing (TDM) is probably the simplest form of bufferless flow 
control. It is suitable for small scale networks. All routers in the network must have a 
common notion of time. In a TDM network all communications are statically scheduled. 
Each router has a local timetable which contains a cyclic schedule for forwarding the 
data from input ports to output ports. The schedules in all routers can be made conflict 
free. They are computed centrally for the network and then loaded in the routers. Such a 
network provides static communication channels with fixed throughput between source 
and destination pairs. However, to change the current state of communication channels, 
new schedules have to be computed and loaded in the routers.  

Buffered flow control 

Adding buffers to the network results in more efficient flow control, since the 
buffer decouples the allocation of adjacent channels. Buffers provide a place to store the 
packets while waiting for the allocation of the next channel, allowing the allocation to 
be delayed.  

To explain and compare different buffered flow control mechanisms, we use the 
example situation illustrated in Figure 2.13. A packet traverses the network on a 4-hop 
path. The packet starts from router 0, passes through routers 1 to 3 and ends in router 4. 
Each router provides buffering space where the packet (or a part of the packet) can be 
stored. The figure shows the situation where the packet (shown in gray) is traversing 
from buffer 1 to buffer 2 on channel 1. All other details about the network and the 
routers have been ommited; the figure shows only the channels and the buffers traversed 
by the packet. We use this example in the following discussion on buffered flow control 
mechanisms.  

 

Figure 2.13: A packet traversing a network channel on its way through the network 

Store-and-forward [27] is historically the first flow control mechanism used in the 
first computer network – ARPANET [48]. With store-and-forward flow control, each 
router along the path waits until a packet has been completely received (stored) and then 
forwards the packet to the next router. Each router should provide enough storage space 
to buffer at least one packet. The maximal packet length is limited by the provided 
buffer space. Before a packet is forwarded, it must be allocated two resources: buffer 
space in the next router and a physical channel.  

Figure 2.14.a shows a time-space diagram of a store-and-forward flow control. The 
diagram shows a 5-flit packet being forwarded over a 4-hop route with no contention. 
At each step the entire packet is forwarded over one channel before proceeding to the 
next channel, which increases the packet latency. In each node the packet spends time tr 
until the resources are allocated for its forwarding, assuming these resources are free 
and the packet does not wait. The time for forwarding the packet to the next node is L/b, 
where L is the length of the packet and b is the bandwidth of the allocated channel. 
Therefore, the zero-load latency of a packet travelling H hops route is: 

(2.4) 



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Figure 2.14: Time-space diagram showing a 5-flit packet sent over 4-hop route with no 
congestions using different flow control mechanisms 

Virtual cut-through flow control [47] overcomes the latency penalty of the store-
and-forward flow control by forwarding the packet as soon as the header is received, 
without waiting for the entire packet to be received. Nevertheless, buffer space is 
reserved for the entire packet, so that in a case of blocking the whole packet can be 
buffered.  

A time-space diagram of a virtual cut-through flow control is shown in Figure 
2.14.b. By transmitting the packet as soon as possible, virtual cut-through flow control 
reduces the packet latency to  

(2.5) 
b

L
HtT r +=0  

Both, store-and-forward and virtual cut-through flow control require large buffers. 
The buffer must be large enough to store at least one packet and the size of the packets 
is limited by the buffer space. 

Wormhole flow control [68] minimizes the required buffer space by allocating 
buffers in units of flits instead of in units of packets. Like virtual cut-through it starts 
forwarding the packet as soon as its header is received, but buffer space is allocated 
only for several flits instead of for the entire packet. In the absence of congestion, 
wormhole and virtual cut-through perform in the same way. The time-space diagram for 
wormhole is the same as for virtual cut-through given in Figure 2.14.b and the zero-load 
latency of a wormhole packet is given by (2.5). The difference in the performance of 
both flow control mechanisms is observed when congestions occur. While in a virtual 
cut-through network the whole blocked packet is buffered in a single router and blocks 
only one input channel, in a wormhole network a router can buffer only part of the 
packet. The body of the blocked packet spreads over multiple routers along the path 
occupying one channel per router. Thus, in a wormhole network a blocked packet 
occupies multiple channels along its path, which results in a lower saturation throughput 
than virtual cut-through.  

To reduce the effect of blocking, Po-Chi et al. [43] propose a scheme in which the 
blocked packets are dropped after a certain timeout expires and later retransmitted. The 
timeout period is calculated as a function of the packet retransmission cost and the cost 
of the performance penalties due to the blocking. The costs are functions of the current 
state of the network and their calculation may lead to an expensive implementation.  

The advantage of wormhole flow control is that the required buffer space is reduced 
from the size of the packet to the size of only a few flits. This is of importance for the 
area constrained network-on-chip implementation, because buffers are the major area 
consuming components in the routers. Furthermore, wormhole flow control decouples 
the packet length from the buffer size. In a wormhole network we can have packets of 
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virtually any length. Thus, the procedure of message splitting and reassembling is 
avoided. 

Virtual-channel flow control [21] improves network saturation throughput 
compared to wormhole flow control, while still keeping the required buffer space small 
and the packet length independent of the buffer size. Virtual channels (VCs) are 
logically independent channels that share the same physical channel. The packets are 
forwarded in the network over the virtual channels. When a packet is blocked, it blocks 
only the virtual channel it uses over a certain physical channel, but the other virtual 
channels can still use the physical channel. A physical channel is blocked only when all 
its virtual channels are blocked, the probability of which is lower than the packet 
blocking probability of wormhole flow control. Thus, the virtual channels keep the 
physical channels well utilised and the network throughput high. In a virtual channel 
network, the zero-load latency can be expressed by (2.5), but the term accounting for 
the serialization latency, L/b, must be adapted to take into account the sharing policy of 
the physical channels. The VCs do not use the full bandwidth b of the physical channel, 
but only a fraction of it, depending on the channel sharing policy and the occupation of 
the other VCs on the same physical channel.  

The benefits of the virtual-channel flow control come at the expense of a more 
complicated control. Virtual channels introduce an additional stage of arbitration and 
allocation in the routers. While the previous flow control methods allocate to packets 
only physical channels, the virtual-channel flow control first allocates a virtual channel 
and then allocates bandwidth for the virtual channel.  

The Flit-reservation flow control [61] addresses performance penalties in wormhole 
networks which are caused by specifics in the hardware implementation as follows. 
While wormhole flow control reduces the communication latency, the idealized router 
model can differ significantly from a hardware implementation. Typically, a router 
implementation is pipelined – in the router a packet has to pass through several pipeline 
stages till resources are allocated to it. Thus, the pipelining unnecessarily increases the 
packet latency. The idea of the flit-reservation flow control is to hide the latency for 
resource allocation by sending in advance control information to the routers about the 
arriving packets. A router then can allocate resources for a packet before the packet has 
arrived. The control information is separated from the data and sent on a separate faster 
control network, where the control flits race ahead of the data flits to reserve network 
resources. As the data flits arrive, they have already been allocated resources and can 
proceed with less latency overhead. 

Table 2.1: Buffered flow control techniques 
‘+’ = advantage, ‘-‘ = disadvantage; 

Flow control Buffer size Zero-load 

latency

Saturation 

throughput

Independent 

packet/buf size

Control 

complexity

Store-and -forward - - + No +

Virtual cut-through - + + No +

Wormhole + + - Yes +

Virtual channels + + + Yes -  

The small implementation area is one of the constraints that on-chip networks have 
to meet. As pointed out in [34] and as we shall see in Chapter 4, where router 
implementation issues are discussed, buffers are one of the main area consuming 
components in the on-chip routers. Therefore, minimization of the buffer size is crucial. 
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This makes bufferless flow control an attractive solution because of its low area cost. 
However, bufferless flow control makes inefficient use of the network channels.  

Table 2.1 compares the advantages and disadvantages of the buffered flow control 
techniques. We choose virtual-channel flow control, which among the buffered flow 
control mechanisms requires minimum buffer space while offering high throughput and 
low latency. Moreover, with virtual-channel flow control packet length is not restricted 
by the buffer size and message splitting and reassembling can be avoided. 

2.3.5. Routing 

The final point in the network which a packet has to reach is given by the packet 
destination address. However, the destination address normally does not contain 
complete information how these point is reached. In most network topologies there is 
more than one possible path between any pair of nodes. Therefore, to deliver the packet 
from source to destination, first a path has to be selected. The procedure of selecting a 
path is called routing.  

Classifications 

Depending on where the routing decisions are taken, the routing is classified as 
source (or centralized) or distributed routing. With source routing, the exact path taken 
by a packet is known before the packet is injected in the network. The routing decision 
is taken either by the source node or by a routing function that is central for the network. 
The packets sent by the source node have a packet header containing not only a 
destination address, but also a description of the path. Each router on the path reads the 
packet header in order to determine in which direction to forward the packet. The 
routers do not take routing decisions, but simply follow the instructions given in the 
packets header.  

With distributed routing, the path a packet takes is not known in advance. When the 
packet is injected in the network, only the address of its destination node is known. 
Each router the packet enters decides in which direction to forward the packet. Thus, the 
routing decision is distributed among the routers in the network. The source node does 
not have control over the paths taken by the packets it sends.  

Depending on how the routing algorithm selects a path from the set of possible 
paths Rxy from source node x to destination node y, the routing is classified as 
deterministic, oblivious or adaptive. Deterministic routing always chooses the same 
path between x and y even if there are multiple possible paths (|Rxy|>1). These 
algorithms ignore the path diversity of the underlying topology and typically do a poor 
job on balancing the load. Despite this, they are common practice because they are easy 
to implement and easy to make deadlock-free. Oblivious routing algorithms, which 
include deterministic routing algorithms as a subset, choose a route without considering 
any information about the present network state. Adaptive routing algorithms choose a 
route taking the current network state into consideration. They adapt their decision to 
the state of the network as the usual goal is to balance the network load, to increase the 
network throughput and to reduce the packet latency. The state information used by 
adaptive routing to take its decision may include the state of a node or channel, length 
of a queue and historical information about the channel load. Adaptive routing 
algorithms differ in whether the algorithm uses local or global state information and 
whether current or history state information is used. The classification of the routing 
algorithms is represented in Figure 2.15.  
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Figure 2.15: Classification of routing algorithms 

When a routing function always returns a minimal path, it is referred to as minimal. 
Otherwise it is referred to as non-minimal. 

Examples of routing algorithms 

Dimension-ordered routing [59, 75] is a simple deterministic routing algorithm for 
k-ary n-cubes (tori and meshes). A packet injected in the network is first routed along 
the highest order dimension until it reaches its final position in this dimension. Then the 
routing continues in the next dimension and so on until the lowest dimension when the 
packet reaches its destination. If the address of the current packet position is {cn-1, cn-2, 
… c0} and the address of the destination node is {dn-1, dn-2, … d0}, the packet is routed 
in the ith dimension until |ci-di|=0, for i = n-1, n-2, ...0. For example, in a 2D mesh, 
packets are routed first in x-direction and then in y-direction. For that reason the 
algorithm is also known as xy-routing. 

Valiant’s randomized routing algorithm [80] is an example of an oblivious routing 
algorithm. It balances the load for any traffic pattern and almost any topology by 
randomizing it. A packet sent from s to d is first sent to a randomly chosen intermediate 
node x and then to d. An arbitrary routing algorithm can be used for routing from s to x 
and from x to d.  

The Minimal adaptive routing [53] algorithm is an example of a distributed 
adaptive routing algorithm that uses local state information. Each node can forward a 
packet only on channels that will bring the packet closer to the destination. Network 
state, typically a queue length, is used to select one of the possible channels.  

Definition of a routing algorithm 

A routing function is defined formally in the following way. Let an interconnection 
network I be defined as a strongly connected directed graph I=(N,C). The vertices of the 
graph N, represent the set of network nodes. The edges of the graph C, represent the set 
of channels. Depending on whether the routing algorithm is source or distributed and 
whether it is node-based or channel-based, the routing function can be defined in three 
different ways: 

(2.6) PNNR a×:  

(2.7) CNNR a×:  

(2.8) CNCR a×:  
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When source routing is used, the output of the routing function is an entire path, P, 
as in (2.6). The returned path is an ordered sequence <c1, c2, …,cn> of network channels 
(alternatively it can be a sequence of nodes). When distributed routing is used, a routing 
function like (2.7) or (2.8) is evaluated once per hop of the packet. The output of the 
function is used to select the next channel the packet takes. Distributed routing can be 
node-based or channel based. Node-based routing uses a function of the form (2.7). It 
takes as input the current node and the destination node. Channel-based distributed 
routing uses a function of the form (2.8). The routing decision is based on the current 
channel and the destination node.  

Distributed routing cannot implement every routing strategy which is possible with 
source routing. This is because little or no history is used from a packet to compute its 
next hop. In function (2.7), for example, nothing is known about the packet except the 
current node and the destination node. Function (2.8) adds information about the current 
channel, providing just enough history (where the packet comes from) to decouple 
dependencies between channels, which is important for avoiding deadlock.  

Deadlock and livelock 

Deadlock is a permanent condition in which a system cannot continue to function 
unless some corrective action is taken. A typical deadlock condition is waiting on an 
event that will never occur, where the reason is a circular resource dependency. 
Deadlock occurs in interconnection networks when a group of packets is unable to make 
progress because the packets are waiting on one another to release resources, usually 
buffers or channels. Such a situation is shown in Figure 2.16.a. The figure presents four 
routers (squares) and four packets (arrows) traversing them. Each packet traverses one 
router straight and enters a second router where it wants to make a right turn. To make 
the turn each packet has to wait (dashed arrow) for the requested channel to become 
free. The requested channels, denoted as c1 to c4, will become free only when some of 
the packets advance and release their channels, which will never happen. Thus, the four 
packets are deadlocked and will never make progress.  

C1

C3

C4 C2

C1

C3

C2C4

a) circular resource dependency b) resource dependency graph  

Figure 2.16: Deadlock in an interconnection network 

For the purpose of analysis of deadlock situations, resource dependency graphs are 
used [31]. The resource dependency graph of our example deadlock situation is given in 



 

 32 

Figure 2.16.b. The nodes in the graph represent resources. In our situation these are 
channels. The edges of the graph represent resource dependencies; for a given resource 
(node), its output edges direct to the resources requested by the current resource owner, 
as here the owners are packets. For example, Figure 2.16.b presents a situation where 
the packet that holds channel c1 requests (waits for) channel c2. In resource dependency 
graphs, deadlock situations are recognized as cycles.  

Two approaches are used in networking to cope with deadlock: deadlock avoidance 
and deadlock recovery. We will discuss each in turn. 

Deadlock avoidance 

Deadlock can be avoided by eliminating cycles in the resource dependency graph. 
One way to avoid the cycles is by restricting the routing function. A general framework 
for design of restricted deadlock free routing algorithms for mesh networks is proposed 
by Glass et al. [33]. It is known as the turn model.  

The turn model defines a deadlock cyclic dependency in terms of the particular 
turns the packets have to take in the network to construct the dependency. Figure 2.17.a 
shows the eight possible turns in a two-dimensional mesh and the two simple cycles that 
can be created by combining these turns. By inspection, to avoid deadlock we must 
eliminate at least one turn in each of these two cycles. Three deadlock-free routing 
algorithms constructed by turn elimination are shown in Figure 2.17.b, c and d. In west-

first routing shown in Figure 2.17.b, the two turns going in west directions are 
eliminated. A packet must take all its west hops before moving in any other direction. 
After turning from the west direction it may route in any other direction except west. In 
north-last routing shown in Figure 2.17.c, the two turns from north to west and to east 
are eliminated. A packet may move freely between the directions except north. Once a 
packet turns north it cannot route in any other direction. Finally, by eliminating the 
north-to-west and the east-to-south turns negative-first routing is derived. The east and 
north directions are considered as positive (+x and +y) horizontal and vertical directions, 
while west and south are considered as negative (-x and -y) horizontal and vertical 
directions. With this notion of direction, in negative-first routing a packet must move 
completely in the negative direction before changing to a positive direction. Once in a 
positive direction, the packet stays there until it reaches its destination.  

a) Simple cycles b) West-first

c) North-last d) Negative-first  

Figure 2.17: Turn model for a two dimensional mesh network 

Figure 2.17 presents three basic cases of turn elimination resulting in deadlock-free 
routing. Other similar deadlock-free routing algorithms can be constructed by 
eliminating other pairs of turns [33].  
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Dimension-ordered routing can also be interpreted from the perspective of the turn 
model. As an example, in Figure 2.18, we represent the XY-routing in terms of the turn 
model. In XY-routing, a packet is first routed completely in the x direction before 
turning to the y direction. Only turns from horizontal to vertical directions are allowed. 
While the turn model eliminates only one turn in a simple cycle, the dimension-ordered 
routing eliminates two turns. Thus, the dimension-order routing is more restrictive than 
the general turn model. 

 

Figure 2.18: XY-routing (dimension ordered routing) as a more restricted version of the 
turn model. 

The turn model and dimension-ordered routing restrict the path diversity which 
reduces the fault tolerance. In the case of dimension-ordered routing the path diversity is 
reduced to zero; only one path can be taken between source and destination. 
Additionally, these techniques cannot remove the channel cycles inherited in topologies 
such as the torus.  

Another approach for eliminating cycles in the resource dependency graph and 
avoiding deadlock is by imposing a partial order of the resources and insisting that a 
packet is allocated resources in ascending order. With such a policy a deadlock cycle 
cannot occur, because to construct the cycle at least one higher-numbered resource 
holder must request a lower-numbered resource, which is not allowed.  

Dally et al. [24] proposes a method for deadlock avoidance by resource ordering 
which is illustrated by the example given in Figure 2.19. The figure presents a four-
node ring network. In each node the channels (and the buffers) are duplicated and 
divided into two classes, class A and class B. When a new packet is injected in the 
network it uses only the resources of class A, but after the packet crosses the border 
between the fourth and the first node, it can use resources only from class B. As shown 
in the figure, with such a resource allocation policy cyclic dependencies between 
resources are avoided.  

A

B

A

B

A

B

A

B

 

Figure 2.19: Deadlock avoidance by resource ordering 

A disadvantage of the resource ordering approach is that the amount of network 
resources is increased in order to introduce resource classes and provide proper 
ordering. Also, an imbalance of resource usage is observed – while some resources are 
overloaded others are underutilised.  
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Deadlock recovery 

The techniques discussed until now focus on eliminating the conditions that cause 
deadlock. These methods require a restricted routing function or additional resources to 
break the resource dependencies. Another approach for dealing with deadlock is to 
recover from deadlock when it occurs instead of avoiding it. Deadlock recovery relies 
on the fact that deadlocks will be infrequent and the average-case performance rather 
than the worst-case performance is considered important. Deadlock recovery algorithms 
involve two key phases: deadlock detection and recovery. In the detection phase, the 
deadlock configuration is recognized. The detection is usually accomplished using 
timeout counters. With each network resource is associated a counter, which is reset 
when data is sent through the resource. However, if the counter reaches a predetermined 
threshold, the resource is considered deadlocked and the recovery phase is started. The 
deadlock recovery may be regressive or progressive. In regressive recovery, the packets 
that are deadlocked are removed from the network. Notification to the sender of the 
dropped packet is required in order to initiate retransmission. In progressive recovery 
[13], the deadlocked packet is not dropped, but drained in a special escape buffer. Once 
in the escape buffer, the packet is routed using a deadlock free routing algorithm. In this 
way, the restrictive deadlock free routing is used rarely, only when a deadlock occurs, 
while in the rest of the time routing is given full freedom.  

Livelock 

Livelock is a situation in which a packet continues to move in the network but 
never reaches its destination. Livelock may occur with non-minimal routing algorithms 
that misroute packets. If there is no limit on the maximum number of times a packet 
may be misrouted, the packet may remain in the network indefinitely. One technique for 
avoiding livelock is to add a small amount of state information to each packet. The state 
can be a misroute count, which holds the number of times a packet has been misrouted. 
Once the count reaches a threshold, no more misrouting is allowed. A similar approach 
is to store an age-based priority in each packet. When a conflict between packets 
occurs, the oldest packet wins.  

 
Having in mind the area constraints on the router implementation, increasing the 

number of the routing resources is not desirable. Among the reviewed deadlock 
solutions, only the turn model does not require additional resources. It simply restricts 
the routing algorithm which is inexpensive to implement. Although restricted, the 
routing algorithm can still be made adaptive and flexible. The disadvantage is that the 
turn model works only for mesh networks and not for tori.  

2.3.6. Quality of Service (QoS) 

Network design is usually focused on improving the average network performance 
and aims at achieving higher average throughput and lower average latency. But no 
matter how good the employed network techniques are, situations remain in which 
congestions occur and resources are allocated to one network user while another has to 
wait. Hence, different network users may experience different throughput, latency and 
in general a different quality of service. On the other hand, different parts of the 
network traffic may have different requirements about the services received from the 
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network. For example, some part of the traffic may be latency-sensitive, while another 
part is not. Some part of the traffic may tolerate data loss, while others do not.  

It is useful to divide the network traffic into a number of traffic classes according to 
the services they require. The traffic classes fall into two broad categories: guaranteed 

service (GS) and best effort (BE) services. Guaranteed service classes are granted a 
certain level of performance as long as the traffic they inject complies with a set of 
restrictions. The restrictions usually set an upper bound on the volume of traffic the 
client can inject – the maximal offered throughput. In exchange, the network specifies 
guarantees about the services it provides, for example the maximal latency.  

In contrast to the guaranteed traffic, the network does not give any guarantees about 
the services provided to the best effort traffic. Depending on the current traffic 
conditions, the best effort traffic may experience an arbitrary low throughput and high 
latency. The network will simply do its best to deliver the packet to its destination.  

The network services are categorised into classes according to a number service 
characteristics. The service can be with or without losses depending on whether it 
guarantees that all data sent on the network are delivered. The service may or may not 
guarantee that data is delivered without fault. The service may or may not guarantee that 
data is delivered in the order it was sent. According to their quantitative characteristics 
services can be classified as low or high throughput, low or high latency, low or high 
jitter. When some of the quantitative characteristics are of importance the service 
provides a worst case bound for it and respectively falls in the category of guaranteed 
services. The services can be also classified according to the way they are accessed: 
whether they are granted or have to be requested, whether they require or not a 
connection to be established between source and destination. 

2.4. Network-on-Chip solutions 

Having discussed all the major techniques we are now well equipped to some recent 
network-on-chip solutions. We discuss what techniques they use for implementing the 
network and for providing guaranteed and best effort services. We discuss only the most 
mature solutions and techniques that are relevant to this thesis. 

2.4.1. Circuit switching solutions 

SoCBUS [84] is a network-on-chip solution that combines circuit switching and 
dropping flow control. The network uses a two-dimensional mesh topology. As in 
circuit switching, before sending the data a request is sent on the network to reserve 
channels to the destination. The request is routed using distributed minimal adaptive 
routing. In contrast to circuit switching, when the request is blocked it is not stored in 
the switch, but is dropped as with dropping flow control and a NACK signal is sent 
back to the sending node. The advantage of the dropping flow control in this case is that 
it makes the network deadlock-free, because all blocked requests are dropped. Circuit 
switching has a simpler and more area efficient implementation than packet switching 
techniques. The reported maximal clock speed of a SoCBUS switch is 1.2 GHz in 0.18 

µm technology.  
A circuit switching network can provide guaranteed services by keeping circuits 

permanently open. A circuit is opened once during the setup phase and then remains 
open. The opened circuit guarantees constant throughput and latency, because the 
resources it uses are allocated and not shared. But during the time the circuit is open the 



 

 36 

physical channels it uses are reserved and cannot be used by other circuits. Since the 
number of physical channels is limited, only few connections can be opened 
simultaneously. On the other hand, when the circuits do not remain open but are closed 
and opened again when needed, latency cannot be guaranteed because the time for 
opening a connection is not bounded (the request may be blocked and dropped many 
times). Therefore, circuit switching is not an efficient solution for providing guaranteed 
services, especially in dynamic systems. 

Wolkotte et al. [86] proposes a circuit switching network with improved capabilities 
for providing guaranteed services. The improvement consists in increasing the number 
of physical channels in the network. The network uses a two-dimensional mesh 
topology, but instead of one physical channel between the neighbouring routers there 
are four physical channels. Thus, this solution utilises the huge amount of wiring 
resources provided by the semiconductor technology. By increasing the number of 
physical channels, the number of circuits that can be opened simultaneously is also 
increased.  

To simplify the design further, the network proposed by Wolkotte et al. does not 
implement mechanisms for opening and closing circuits (request, ACK and NACK 
signalling). Instead, each switch has a configuration interface through which 
connections are set between the switch input and output ports. The reported area of a 

switch with 4-bit wide channels, implemented in 0.13 µm technology is 0.05 mm2 and 
the maximal clock frequency is 1 GHz.  

The configuration interface is accessed through an additional serial wormhole 
network with ring topology [85]. Each router in the wormhole network is connected to 
the configuration interface of a circuit switch. The wormhole network is used to carry 
configuration messages to the circuit switches and to handle the best effort traffic in the 
system. To configure a circuit, configuration messages are sent over the wormhole 
network to all the switches along the path of the circuit.  

2.4.2. Packet switching solutions 

The Æthereal network-on-chip [34] provides guaranteed services (GS) and best 
effort (BE) services by combining two techniques: time-division multiplexing (TDM) 
and wormhole routing. The routers of the Æthereal network consist of two parts. One 
part handles the BE traffic and employs wormhole routing. The other part handles the 
GS traffic and employs TDM. The network has a global notion of time. The network 
channels are used on a timeslot basis. GS services are provided by timeslot reservation. 
A GS communication channel is constructed by reserving timeslots on the physical 
channels along the path between the source and the destination node. All the GS traffic 
in the network is scheduled in timeslots. The BE wormhole network uses the time slots 
left unused by the GS traffic without preliminary reservation.  

The Æthereal network is also equipped with a network interface (NI) [66]. The NI 
is a component connecting the IP modules to the network routers. The functionality 
provided by the NI is related to partitioning messages into packets, message 
reassembling and end-to-end flow control. 

The Æthereal network is available in three versions: GS-BE distributed 
programming architecture, GS-BE centralised programming architecture and GS 
centralised programming architecture. With the distributed programming architecture 
every router is equipped with a timeslot table which controls the forwarding of GS 
packets from input ports to output ports. The tables are configured by the senders by 
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sending a special configuration BE packet which travels from source to destination 
configuring the tables of all traversed routers. The area of this version of the router is 

0.24 mm2 (32-bit channels, 24 word buffers and 256 slots in 0.13 µm CMOS 
technology) and the maximal clock frequency is 500 MHz.  

The GS-BE centralised programming architecture moves the timetables from the 
routers to the NIs. Now the tables control the exact time the GS packets are injected in 
the network. The GS packets traverse the network with a constant speed of one hop per 
cycle and follow predetermined paths. Hence, knowing the packet injection time we 
know exactly which timeslots on the network channels the packet utilises. The tables 
programming is preformed by a central system authority (root). The root configures the 
NIs either through memory mapped I/O interface or through special system GS or BE 
packets (ReserveSlot and FreeSlot). By moving the timetable to the NI the router area is 
reduced to 0.13 mm2. The maximal clock frequency is 500 MHz. 

The GS centralised programming architecture is the same as the GS-BE centralised 
but without the wormhole part. Thus this version does not support BE traffic but the 
router area is reduced to 0.03 mm2 and the maximal clock frequency is 1000 MHz. 

TDM has simple implementation and provides a straightforward way for achieving 
predictable networks (and systems) operation. However, TDM alone cannot handle BE 
traffic. A separate BE solution is required, which adds extra cost. A drawback of TDM 
is also the need for schedule computation. Every time the setup of the GS connections 
in the network is changed a new schedule has to be computed. Schedule computation is 
an NP complete problem and as the size of the network increase reconfiguring the 
network becomes a heavy and slow task. This inflexibility make a TDM network not the 
most suitable solution for a dynamic system. Furthermore, the global notion of time in a 
TDM network requires global clock distribution, which makes the network difficult to 
apply in the GALS (Globally-Asynchronous Locally-Synchronous) systems foreseen in 
the near future. 

The area of the Æthereal router with five 32-bit channels, 24 word buffers and 256 

slots in 0.13 µm CMOS technology is 0.24 mm2. The router can operate at maximal 
clock frequency of 500 MHz. 

The Æthereal network is also equipped with a network interface (NI) [66]. The NI 
is a component connecting the IP modules to the network routers. The functionality 
provided by the NI is related to partitioning messages into packets, message 

reassembling and end-to-end flow control. The size of the NI is 0.143 mm2 in 0.13 µm 
technology and operates at a maximal clock frequency of 500 MHz. 

The Æthereal solution does not consider a particular network topology but the 
network is generated automatically to satisfy the communication requirements of a 
target application as at the same time the network area overhead is minimised [36]. The 
generated network can be of any topology, regular or irregular. While such a network 
minimizes the area overhead and provides a scalable solution for IP core 
interconnection, it is not clear whether it structures the global on-chip wiring and helps 
to solve the signal integrity problem. 

aSOC [52] is a framework for on-chip communication in heterogeneous tiled 
architectures. The topology of the network is a two-dimensional mesh. aSOC 
implements an advanced TDM scheme capable of handling more dynamic traffic 
patterns, but still keeps the hardware simple. Instead of a slot table, each router has a 
sequencer that allows switching between different timeslot schedules at run-time. A new 
schedule is not loaded at run time; all the schedules are loaded at configuration time and 
at run-time different schedules can be activated. Although this approach adds flexibility 
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to TDM, it still requires all communications to be scheduled at compile time. 

Implemented in 0.18 µm technology the network speed is 400 MHz. 
Proteo [70] is packet switching virtual cut-through NoC. It is intended for 

heterogeneous systems. The network itself is heterogeneous. Its topology is hierarchical. 
A number of subnets with a ring topology are connected by a system-wide ring network. 
The subnets interconnect clusters of functionality-related components. The network is 
constructed from a number of parameterised components. By choosing the components 
parameters at design time, a network that meets the requirements of an arbitrary 
application can be constructed. The packets in the network are of limited length, which 
requires message splitting and reassembling at the network entrance and exit point.  

In Nostrum NoC [56], guaranteed services are provided using a TDM related 
technique called temporally disjoint networks. The advantage is that no slot tables are 
needed. Instead, a specific slot reservation scheme called looped containers is used. To 
our knowledge, no implementation results are available for this network. 

SPIN [10] is a packet switching wormhole network with distributed adaptive 
routing. The topology is indirect and employs a three stage Clos network [27]. While 
this network scales well in number of terminal nodes, it does not show structured and 
regular wiring. Therefore, it does not help in coping with the signal integrity problem. 

Implemented in 0.18 µm the network router has area of 0.24 mm2 and operates at 200 
MHz [12]. 

2.4.3. Clockless solutions 

The NoC solutions presented below are also packet switching, but they are 
implemented using asynchronous design techniques and do not rely on a globally 
distributed clock. Therefore, they have the advantage of being directly applicable for 
GALS systems foreseen for the near future.  

The MANGO network, proposed by Bjerregaard et al. [18], is a clockless NoC 
solution that employs virtual channels (VCs). The network provides guaranteed services 
(GS) as well as best effort (BE) services. The GS services are connection-oriented and 
are provided by means of VC reservation. The VCs at each physical channel are divided 
in two sets – one set of VCs serving the GS communications and one set serving the BE 
communications. The VCs from the GS set are used to carry GS connections. Each VC 
from the set can be statically allocated to at most one connection. Thus, connections do 
not share VCs and blocking is avoided. Data is sent over the connections without 
additional control information. The VCs from the BE set are used to carry 
connectionless source-routed data packets. The VCs from this set are shared and are 
allocated to packets dynamically. Therefore, packet blocking is possible and throughput 
guarantees cannot be given.  

The two sets of VCs share the same physical channels, but in the router they are 
treated separately. The router in the MANGO network consists of two parts, a GS part 
and a BE part, which manage the data from the corresponding set of VCs. The GS part 
of the router multiplexes the GS data arriving on the input links to the output links. The 
multiplexing is controlled by a map stored in the GS part of the router. The map gives 
the correspondence between the input GS VCs and the output GS VCs, as this 
correspondence is considered static during a connection usage. The map is loaded in the 
GS part of the router through the BE part by sending a BE packet to the router. Thus, to 
set a connection, configuration BE packets have to be sent to all the routers along the 
route of the connection. The BE part of the router controls the data transfer on the BE 
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VCs. It implements the functionality of a virtual channel router. It retrieves the routing 
information from the received packet headers and forwards the packets according to this 
information.  

The reported area of a MANGO router [18] with five 32-bit links and 8 VCs per 

link implemented using 0.12 µm CMOS standard cells is 0.188 mm2. The performance 
of the router corresponds to 515 MHz.  

Felicijan et al. [32] propose another clockless NoC that employs VCs, but instead of 
VC reservation, GS services are provided by means of VC priorities. The network has 
four VCs per physical channel. Three of them are used for guaranteed service 
connections and the BE traffic shares the fourth VC. The four VCs are assigned static 
priorities and the BE traffic uses the one with the lowest priority. Thus, packets using 
higher priority VC receive better services: higher throughput and lower latency. 
However, since packet blocking on the high priority VCs is still possible, the received 
service is difficult to predict and guarantee. To our knowledge, no implementation 
results are available for this network.  

2.4.4. Summary 

Table 2.2 summarises the techniques and the implementation results for the 
reviewed NoC solutions  

Table 2.2: Summary of the reviewed NoC solutions.  
na = information is not available 

NoC
Provided 

services
Topology Flow control Routing

Area 

[mm2]

F 

[MHz]

Tech. 

[mm]

SoCBUS BE 2-D mesh
Circuit  switching 

with dropping

Distributed, 

minimal 

adaptive

na 1200 0.18

Wolkotte GS, BE
2-D mesh, 

Ring

Circuit  switching, 

cut-through 

(serial)

na 0.05 1000 0.13

Ǽ thereal 

Distib.
GS, BE Any TDM, Wormhole

contention-free 

routing, source 

routing

0.24 500 0.13

Ǽ thereal 

Centr.
GS, BE Any TDM, Wormhole

contention-free 

routing, source 

routing

0.17 500 0.13

Ǽ thereal 

GS only
GS Any TDM

contention-free 

routing
0.03 1000 0.13

aSOC GS 2-D mesh TDM na na 400 0.18

Proteo na
Hierarchical 

rings
na na na na na

Nostrum GS, BE 2-D mesh TDM
diflection 

routing
na na na

SPIN BE
3-stage Clos 

network
Wormhole

Distriburted 

adaptive
0.24 200 0.13

MANGO GS, BE grid-type Virtual channels source routing 0.19 515* 0.12  

Table 2.3 compares only the NoC solutions providing both GS and BE services. In 
all these networks, GS is provided by means of resource reservation. The approaches 
rely either on circuit reservation, time-slot reservation or VC reservation. To open a GS 
connection, resources (circuits, time slots or VCs) are reserved over network channels. 
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All the networks assume that the reservation is done centrally, by a global network 
authority. Therefore, they require a centralized system organization.  

The centralised network resource management ease the application of deadlock 
avoidance solutions. A deadlock avoidance algorithm can be directly incorporated in the 
resource reservation and traffic planning in the system. 

Although the networks differ in term of the techniques employed, in all of them 
opening a GS connection requires that a central authority reserves resources at network 
channels. From an algorithmic point of view, the problem of resource reservation in all 
NoCs presented in Table 2.3 is the same or at least quite similar. In all of them the 
network channels provide multiple resources of some type (lanes, time-slots, VCs ) and 
an algorithm searches for resources to be reserved at the channels from source to 
destination, such that a path is constructed. Thus, we may expect that the task of 
opening a GS connection will have similar computation complexity for these networks. 
However, the approaches differ in whether the resources on network channels are 
ordered or not. While it is not of importance which circuits or VCs are reserved on a 
channel, for the time-slot reservation it is of importance which time-lots are reserved. 
For example, in the most restrictive case, if a time-slot i is reserved on one channel, then 
the time slot i+1 must be reserved on the next channel and so on, such that the data 
advances on the path with every time slot. Thus, the time-slot reservation (TDM) 
approach is more restrictive in resource reservation. As a result, providing a GS 
connection when most of the resources are occupied will be more difficult in a TDM 
network than in a network where GS are provided by means of VC or circuit 
reservation. Moreover, since TDM relies on a global notion of network time it is not 
suitable for application in globally-asynchronous locally-synchronous (GALS) system 
where global clock, and therefore global notion of time, is not available.  

Table 2.3: Specifics of the networks providing GS and BE services 

NoC GS approach
Applicable in 

GALS systems

GS connection 

is configured by

Combining 

GS and BE

Wolkotte
Circuit  

reservation
yes BE packets

Separate 

networks

Ǽ thereal
T ime-slot 

reservation
no BE packets

Separate 

router parts

Nostrum
Time-slot 

reservation
no The source node Single router

MANGO
VC 

reservation
yes BE packets

Separate 

router parts  

The NoC solutions presented in Table 2.3 differ in the mechanisms used for 
configuring (opening) a GS connection; i.e. the actions that have to be taken to open a 
GS connection after resources have been reserved for it at a higher level. In most of the 
networks a GS connection is opened by BE packets that configure the routers along the 
connection. Either separate BE packets are sent to all the routers along the GS 
connection, or a single BE packet is sent through the routers along the connection. In 
any case, an explicit connection setup is required before using the connection. Since BE 
packets are used for that, no guarantees can be given for the duration of the setup 
period. In Nostrum a GS connection is opened directly by the sending node without 
sending an explicit BE packet. However, throughput guarantees can be claimed for a 
connection only during the network setup period when the system is started. Therefore, 
in Nostrum GS connections cannot be opened dynamically during the system operation 
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time. Only in Æthereal (centralised programming architecture) the configuration is done 
by GS packets and the time for opening a connection can be predicted.  

Finally, Table 2.3 compares how the networks combine the GS and BE services in a 
single solution. Wolkotte uses two separate networks to carry GS and BE traffic. 
Æthereal and MANGO uses a single network, but in the routers both types of traffic are 
processed separately. In the Æthereal router BE and GS packets use different data paths 
(buffers) and in the MANGO router they are processed by separate sub-routers. Only in 
Nostrum both traffic types are processed by a unified router solution.  

2.5. Conclusion 

In this chapter we review the most important techniques for building 
interconnection networks. Two-dimensional mesh and torus topologies naturally fit the 
physical placement of the tiles on a chip and have the potential to provide a simple and 
regular global wire layout together. Among the reviewed flow control mechanisms, 
virtual-channel flow control provides a balance between performance and buffer size. 
Taking into account the area constrained NoC implementation, the most efficient 
solution to avoid deadlock is the restricted routing, using the turn model. 

The main problem in the NoC design for our application domain is the provision of 
guaranteed services together with best effort services. The difficulty comes from the 
fact that the resources available for building a router are limited due to the design area 
constraints. In most of the reviewed NoCs, separate techniques are used for each service 
class. Either two separate networks are implemented to deal with each traffic class or 
the routers consist of two separate parts, each dedicated to a different traffic class. In the 
second case, both types of traffic share the same network channels, but inside the router 
they are processed by different parts of the router. As we will demonstrate in the rest of 
the thesis, this separate treatment of BE and GS is unnecessary. By unifying the two 
classes of traffic solution can be found. 

The second problem in the NoC design is the network reconfiguration. The 
approach taken for network reconfiguration determines whether the network can be 
reconfigured at runtime and whether the time for reconfiguration can be predicted and 
guaranteed. Since we aim at dynamically reconfigurable system, runtime 
reconfiguration and predictable reconfiguration time are mandatory for out network. 
The solution we present satisfies this requirement. 

The third problem that has to be considered when designing a NoC is the 
computation of the network configuration. In most of the reviewed network solutions it 
is assumed (some times silently) that the configurations loaded into the network are 
provided by some central network authority or that pre-computed configurations are 
used. We also assume a central system authority. However, in our case the 
configurations are computed at run-time and therefore the time for computing a 
configuration is a critical issue – it must be small and bounded. We will present a 
network solution that requires a configuration computing task of lower complexity that 
the task required by the statically scheduled (TDM) network solutions. Thus it is a 
solution more suitable for systems where the network configuration is computed at run-
time. 
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Chapter 3  
 
Network-on-Chip architecture* 

This chapter proposes a router architecture and a resource 

reservation scheme, which when combined enable us to 

provide guaranteed as well as best effort network services 

in a virtual channel network. The concept is verified 

through a simulation and compared with other solutions. 

3.1. Introduction 

The review of networking techniques in Chapter 2 shows that virtual-channel flow 
control has the following two advantages over other flow control techniques: i) it allow 
the size of the network buffer to be reduced without significantly affecting the network 
performance, ii) the length of the network packet is not restricted by the size of the 
network buffers.  

In Chapter 4 we shall see that a major part of the area of a network router of such a 
small scale as a NoC router is occupied by buffers. Therefore, for the area constrained 
router implementation it is crucial to minimise the router buffer size. However, with 
most flow control mechanisms the buffer size reduction has a negative effect on the 
network performance; the network throughput drops and the message latency increases. 
For some flow control mechanisms the small buffer size also implies impractical 
constraints on the packet length. With the buffer size that we aim in our design (of 
several data words) the maximal packet length would be only a few words, which would 
be rather inconvenient when handlings intensive data streams – the major part of our 
traffic.  

The virtual channel flow control is the only flow control mechanism which enables 
us to reduce the total size of the router buffers, and thus to minimise the area, without 
sacrificing performance; the cost is only a small increase of latency while the packet 
length is unrestricted. This is the reason for us to choose virtual channel flow control for 
our Network-on-Chip (NoC). A network based on a virtual-channel flow control we 
shall call a virtual channel network. 

In this chapter we look at the possible architectures for a router in a virtual channel 
network. Our objective is to define an architecture that allows providing of predictable 
communication services. We propose predictable router architecture and complement it 
with a method for providing guaranteed services (GS) and best effort services (BE) on a 
network level. Like most of the other NoCs, the approach we use for providing 
guaranteed services relies on a centralised system organisation. What distinct our 

                                                           
* Major parts of this chapter have been presented at the International Symposium on VLSI [6], at the 
International System-on-Chip Conference [5], at the EUROMICRO Symposium on Digital System Design [1] 
and at the PROGRESS Embedded Systems Symposium [3]. 
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approach is the unified treatment of BE and GS traffic at a router level. Our router 
architecture does not include features that are specific for the one or the other type of 
traffic. The distinction between BE and GS traffic is made at a network level when 
resources are distributed between the traffic by a central system authority. Thus, the 
router architecture is simplified and the architectural choices are less traffic dependent.  

In the following discussion we consider a network like the one shown in Figure 3.1. 
The network routers are arranged in a grid. Each router is connected to its neighbouring 
routers and to a local processing element (PE) by full-duplex channels. The constructed 
network topology is a two-dimensional mesh.  
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R R R R R

R R R R R

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE
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Figure 3.1: Network architecture 

All routers in the network are identical. Each router has five input and five output 
ports – four connected to its neighbours and one to its local PE. The routers at the edge 
of the mesh are connected to fewer than five channels. The ports that are not connected 
to channels are either left unused or connected to external interfaces or peripheral 
devices. The only active network components are the routers. The PEs are not 
considered part of the network. They are present as the source and sink of data.  

For more gradual explanation of the virtual channel router and its operation, we first 
introduce a wormhole router and then extend it with virtual channels. 

3.2. Wormhole router architecture 

Wormhole routers, as the name suggests, employ wormhole flow control [68]. 
Historically, the wormhole flow control was called wormhole routing, but actually has 
nothing to do with routing. The typical architecture of a wormhole router is presented in 
Figure 3.2. The router has a number of input and output ports connecting it to 
neighboring routers or a PE. In the considered example network, the routers have five 
input and five output ports. Each input port has a first-in-first-out (FIFO) buffer to store 
the incoming data. From the buffer the data is switched to an output port and 
transmitted to the next router. The switching is done by a fully connected switching 
fabric configured by a switch allocator.  
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Figure 3.2: Architecture of a wormhole router 

The data in a wormhole network is transported in packets. The packet encapsulates 
the transported data together with a small amount of control information. The packets 
are constructed of a series of smaller data units called flow control digits or flits. A flit 
is the atomic data unit that the flow control operates on; this is the data unit transmitted 
between two routers in a single flow control transaction. Flits are of constant size – one 
or more data words. Each flit is tagged as either: header (H), body (B) or tail (T). 
Packets are constructed by flits of different type. A typical packet format is shown in 
Figure 3.3. A packet starts with one or more header flits (H), followed by one or more 
body flits (B) and terminates with a tail flit (T). The sequence of header flits forms the 
packet header which constructs the beginning of the packet. The packet header carries 
routing information and control information used by routers. The sequence of body flits 
carries the transported data (the payload). The tail flit indicates the packet end.  
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Figure 3.3: Packet format 

To send data over the network, a sender PE constructs a packet and injects its flits 
in the network. Each router on the packet’s route forwards the flits to the next router 
until the destination PE is reached. The destination PE receives the packet flit-by-flit.  

In each traversed router, before it is forwarded the packet passes through two stages 
of processing. The first stage is the routing stage. In this stage the router examines the 
routing information in the packet header and determines the packet destination output 
port. In the second stage the packet is allocated a crossbar connection to the destination 
output port. This is the switch allocation stage. When the switch connection is allocated, 
all the packet flits are forwarded to the output port and the switch connection is released 
after the tail flit.  

When the destination output port is currently occupied by another packet, the 
crossbar connection can not be provided and the packet blocks. The blocked packet 
waits until the port is released and the switch connection is allocated. While waiting the 
packet is stored in the network buffers. The first flits of the packet are buffered in the 
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router where the blocking occurred. The next part of the packet is buffered in the 
previous router and so on. To avoid data loss, the flow control provides a back pressure 
mechanism that blocks the output port of the previous router in case the buffer of the 
next router gets full. In that way, the blocking propagates back along the packet route to 
the packet tail or the source PE.  

It is possible that several packets destined for the same output port have arrived on 
different input ports and are at a same time in the switch allocation stage. In such case 
packet contention occurs and so arbitration is needed to solve it. One of the contending 
packets is chosen according some arbitration policy and granted the output port while 
the other contending packets have to wait. 

The arbitration and allocation is done by the switch allocator (see Figure 3.2). The 
switch allocator receives requests from the input ports, decides what switch connections 
to provide and configures the crossbar switch. Although it is not shown in Figure 3.2, 
the switch allocator interacts with the input ports too. Figure 3.2 is simplified to show 
only the data path in the router and does not show the control paths. If we look at each 
input port in more detail, we find not only a FIFO buffer, but also control logic which 
together with the buffer forms an input controller. The input controllers of all ports 
interact with the switch allocator as shown in Figure 3.4. 

Besides the FIFO, the input controller consists of routing logic and port control 
logic. The routing logic examines the packet header and determines the packet 
destination output port. The port control logic stores the current state of the packet and 
interacts with the switch allocator to request an output port and to forward flits. The 
input controller also sends information about the available buffer space back to the 
previous router. This information is usually referred to as credits. The credits are used 
by the switch allocator in the previous router to prevent sending data to full buffers.  
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Figure 3.4: Input controller – structure and connection to the switch allocator 

The switch allocator arbitrates between the requests coming from all input ports and 
controls the flit forwarding process. The maximal rate at which the requests can arrive 
and flits can be forwarded is determined by the time for transmitting a flit over a 
channel between two routers. Therefore, the maximal rate at which the switch allocator 
operates is determined by the flit transmission time. The flit transmission time depends 
on the physical channel rate and the flit size. A flit of size L bits is transmitted on 
channel of rate b bit/s for time L/b seconds. Thus, the larger the flit, the lower the switch 
allocator operating rate is. The flit size is used to adjust the speed of the router to the 
speed of the physical channel. This is needed when the router implementation is slower 
than the rate at which the data is delivered by the channels. The flit size also influences 
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the buffer size. As we shall see in Chapter 4, our router implementation is fast enough, 
so we can choose the smallest flit size to minimize the buffers. In our network, the size 
of the flit is a single word and a flit is transmitted over a network channel in a single 
clock cycle.  

In a wormhole network, blocked packets are stored not in a single router but spread 
over several routers along the route. In each of the routers a packet occupies a FIFO 
buffer and its input channel. These channels cannot be used by other packets until 
released, so other packets may block waiting for them. These packets may, in turn, 
cause other packets to block and so on, the blocking spreads as a tree in the network. 
This is known as the effect of tree blocking. Tree blocking is the reason why wormhole 
networks have a low saturation throughput. Tree blocking increases the packet blocking 
probability and as a result the network channel utilisation and the network saturation 
throughput decreases. For a formal discussion on the performance of wormhole 
networks, refer to [30, 44]. 

The high packet blocking probability in wormhole networks causes low saturation 
throughput and low channel utilization. To improve the performance of wormhole 
networks, virtual channels should be employed. 

3.3. Virtual channel router 

Virtual-channel flow control is a technique that allows several logically 
independent channels to share the same physical channel. Employing virtual channels to 
improve the performance of a wormhole network was proposed by Dally [21]. The idea 
of virtual channels is shown in Figure 3.5. The figure shows two routers with a physical 
channel between them. In the transmitting router, several virtual channels (VCs) are 
multiplexed on the physical channel. In the receiving router the VCs are demultiplexed 
and buffered separately. Thus, the VCs time-share the physical channel. The 
multiplexing is controlled by an arbiter and the arbitration policy determines how the 
bandwidth of the physical channel is allocated to the VCs.  

The packets traverse the network using VCs. When a packet blocks, it keeps the 
VCs it traverses occupied. However, the traversed physical channels are not blocked 
since other VCs on these channels can continue to carry data. Hence, packet blocking 
does not directly cause physical channel blocking and the effect of tree blocking is 
reduced. Therefore, employing VCs in a wormhole network improves the physical 
channel utilization and the network saturation throughput. The cost is only a small 
increase of the average packet latency; however, the worst case latency stays the same.  
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Figure 3.5: Implementing virtual channels (VCs) on a physical channel 
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Figure 3.6 presents two possible architectures for a virtual channel router. They 
differ in where the VC multiplexing takes place. In the architecture of Figure 3.6.a, the 
VCs are multiplexed immediately after the buffers, before the crossbar inputs. The 

crossbar is symmetric – in a router with p ports the crossbar size is p×p ports. Hence, we 
call this architecture a symmetric architecture. With the symmetric architecture the size 
of the crossbar does not depend on the number of VCs. In the second architecture shown 
in Figure 3.6.b, the VCs are directly connected to the crossbar without multiplexing. 

The crossbar is asymmetric – for v VCs per physical channel, the crossbar size is pv×p 
ports. Hence, we call this architecture an asymmetric architecture. With the asymmetric 
architecture the crossbar size depends on the number of VCs.  

As we shall see, the asymmetric architecture simplifies the router control logic, but 
because of its larger crossbar it is practically excluded from consideration [21, 62]. 
However, in Chapter 4 we show that when appropriately implemented the area results 
for the asymmetric architecture can be competitive with those of the symmetric 
architecture.  

 

Figure 3.6: Architectures of a virtual channel router; p – number of ports; v – number of 
VCs per port 

Compared to the wormhole router, the virtual channel router increases the number 
of buffers. However, the total amount of buffer space does not increase, because the 
buffers can be smaller. A given fixed amount of storage space per input port can be 
distributed among a number of VCs. For example, we can have a small number of VCs 
with large buffers or many VCs with a small amount of buffer space per VC; if only one 
VC is used the virtual channel router turns to a wormhole router. This trade-off was 
studied by Dally [21]. The results show that it is advantageous to have more VCs with a 
small buffer space, because in this way the network saturation throughput is increased. 
In general, there is little performance gained by making the VC buffers deep.  
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If the amount of buffer space per VC is fixed, the increase of the number of VCs 
linearly increases the total amount of buffer area per input port. However, the saturation 
throughput of the network does not increase linearly but logarithmically. Adding a small 
number of VCs first causes a large increase in throughput, but as more VCs are added 
the gain diminishes. Dally’s results [21] suggest that for uniform traffic four to eight 
VCs per physical channel is adequate. For example, four VCs per physical channel 
result in 75% of the throughput of a network with 20 VCs. Further increase of the VCs 
to eight results in 80% of the throughput of a network with 20 VCs. Since the doubling 
the VCs doubles the buffer area but improves the throughput only by 5%, in our 
network we use four VC per physical channel.  

Compared to a wormhole router, a virtual channel router has a more complex 
control. A new control block, called VC allocator, is introduced in the router 
architecture and a new packet processing stage, called VC allocation, is performed. The 
new packet processing stage takes place between the two old stages, the routing stage 
and the switch allocation stage. After the packet header is examined in the routing stage, 
the packet goes in the VC allocation stage. In the VC allocation stage, the packet is 
allocated a VC on the destination output port. Then, the packet goes in the switch 
allocation stage to be allocated a crossbar connection.  

While in a wormhole router crossbar connections are allocated on a packet basis 
(for the duration of the packet transmission), in the virtual channel router crossbar 
connections are allocated on a flit basis. After each transmitted flit the packet has to 
compete again for a crossbar connection. That is because the output ports are time-
shared between several VCs. In fact, crossbar connections are allocated not to packets, 
but to VCs. The switch allocator acts as the arbiter in Figure 3.5 and distributes the 
bandwidth of the physical channels between the VCs.  

The VC allocation is done by the VC allocator upon request from the input 
controllers. In a virtual channel router every VC has an input controller. All input 
controllers interface with the switch allocator, as in Figure 3.4, but they also interface 
with the VC allocator. By allocating a VC to a packet, the VC allocator creates a 
correspondence between the VC the packet has arrived on and the VC the packet will 
depart on. This correspondence is stored as a router state for the duration of the packet 
and is used to control the switch allocator. The switch allocator has to provide 
connections between corresponding input and output VCs. These connections are 
provided for a single flit transmission. How often they are provided determines the 
transmission rate of the VCs, hence their bandwidth.  

In a virtual channel router packets are allocated two types of resources – a VC and 
bandwidth of an output port. The allocation of these resources is done respectively by 
the VC allocator and the switch allocator. Compared to a wormhole router, a virtual 
channel router decouples the channel allocation from the bandwidth allocation. This 
allows the bandwidth distribution to be controlled without affecting the channel 
distribution policy. 

3.4. Resource allocation in a VC router 

The Quality-of-Service (QoS) experienced by the network packet is to a greate 
extend determined by the way in which network resources are allocated to packets. The 
resources of a virtual channel network are the virtual channels and the physical channel 
bandwidth allocated to the VCs. Here we explore the possibilities to make the allocation 
of these two resources predictable such that the service quality can be guaranteed.  
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We consider two types of network services – guaranteed services (GS) and best 
effort (BE) services. The traffic that uses GS is guaranteed service quality for any 
network condition. The service quality is measured in terms of communication 
throughput and packet latency and the quality guarantees are given in terms of a worst 
case bound for the throughput and latency. The quality provided by the BE services is 
not guaranteed but depends on the current network conditions. However, the BE 
services should provide fairness, which means that in any network condition all the BE 
traffic is treated equally. 

The quality of the network service is, in fact, the network behaviour seen from the 
perspective of a network user. Consider a packet injected into the network by a network 
user. Traversing its path from source to destination, the packet uses network resources, 
i.e. VCs and bandwidth, provided by the traversed routers. The packet will experience 
best service if it always and immediately obtains the full capacity of the resources it 
requires for the time it needs them. However, because the network resources are shared 
between all the traffic in the network, the packet often has to contend for resources. 
Hence, the quality of the service the packet receives is determined by the presence of 
resource contention along the path and by the way these contentions are solved. To 
make the service predictable we must be able to control or predict these two factors – 
the presence or absence of contention and the contention solving.  

The presence or absence of resource contention is influenced by the traffic 
distribution in the network and in time. While we do not have control over the traffic 
distribution in time, which is the data generation process in the data sources, it is 
possible to control the routes the traffic takes in the network by controlling the traffic 
routing policies. Thus, traffic routing is an option to control the presence of contention.  

How the resource contentions are solved is determined by the resource arbitration 
policy. This is, whether the packet has to wait in a case of a conflict and, if so, for how 
long. The resource arbitration is done by the router allocators, which we will examine 
now in more detail. In a virtual channel router there are two allocators the VC allocator 
and the switch allocator. 

3.4.1. VC allocation 

A route has input ports and output ports and one each port there are VC. We refer to 
the VCs on the input ports as input VCs and to the VCs on the output ports as output 

VCs. Packets enter the router on the input VCs and leave the router on output VCs. The 
task of the VC allocator is to create a one-to-one mapping between input VCs and 
output VCs for the purposes of packet traversal disallowing converging VCs. 

When a packet enters a virtual channel router, it is first allocated a VC on an output 
port. The procedure for that is the following. The input controller of the VC where the 
packet has arrived sends a request to the VC allocator. Then the input controller waits 
until the allocator grants the request.  

The VC allocator receives requests from all input VCs, so it can receive up to pv 
requests at a time. A packet may request any VC on any output port*. Hence, an output 
VC can be requested by more than one packet and the VC allocator must arbitrate 
between the requests.  

                                                           
* To reduce the implementation complexity, most routers exclude the possibility of forwarding a packet in the 
direction it comes from. In our implementation we also do so. However, to avoid triviality, we do not consider 
this option when explaining the resource allocation.  
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To provide service guarantees, we must be able to provide and upper bound on the 
time a packet waits until it is allocated a VC. One attempt in this direction is to 
introduce traffic priorities. The GS traffic can be given a higher priority than the BE 
traffic. Thus, whenever a GS packet competes with BE packets, the GS packet wins and 
attains the requested VC first. While this scheme improves the service provided to the 
GS traffic at expense of the service provided to the BE traffic, it does not provide a 
bound on the VC allocation time for the GS traffic. A GS packet still may compete with 
other GS packets, in which case the time for VC allocation is difficult to predict. The 
allocation time depends on the number of competing packets, the number of arbitration 
cycles before the packet attains the VC and the time the packets occupy the VC.  

An upper bound on the VC allocation time can be provided by ensuring that no 
contention occurs, in which case a packet is immediately allocated a VC. One option to 
avoid contention is to provide that competing requests from different input VCs arrive 
at different times. However, we do not have control over the packets arrival times and 
this option is not feasible for our network. The other option to avoid contention is to 
provide that an output VC is requested only by packets arriving on the same input VC. 
Such a condition can be provided by appropriate traffic routing. Since it is possible to 
control the traffic routing, this is a feasible option for our network.  

When contention is avoided in all the routers traversed by the packet, the packet 
will never find a VC occupied and will never wait. The allocation time per router is 
known and the upper bound of the total allocation time along the path can be calculated. 
To avoid contention for all the VCs traversed by a packet we use VC reservation. All 
the packets from source to destination always follow the same path over reserved VC. It 
is stipulated that the reserved VCs are not used for other communications.  

The VC reservation is done at a higher system level by a central routing function 
that finds routes for all the network traffic. The central routing function is a task running 
in the system on a general purpose processor which acts as a central system authority.  

The paths over VCs are reserved when an application is started. Usually and 
application will need several paths for communication between its tasks running on 
different PEs. We can see these paths as connections and hence the GS services are 
connection oriented.  

The VC reservation at higher system level does not instantiate the connection, but 
only reserves VCs for it, providing that these VC will not be used for other 
communications. The connections are instantiated by the PEs when the application is 
started. When configured the PE received descriptions of the paths it has to use for 
communication. Since we use source routing, these descriptions are directly used in the 
packet headers. To open a connection a PE sends a packet header and to close the 
connection it sends a tail. Thus, there is certain duality between a packet and a 
connection when considering the GS services in our network. However, the negotiation 
for the connection resources is done in advance at a higher system level. The resources 
are permanently reserved for the connection, no matter whether it is opened or not.  

The BE traffic is transported on VCs that carry only BE traffic. This VCs may be 
shared between BE packets of many source-destination pairs. Hence, the BE packets 
may encounter contention and their VC allocation time is not bounded. Whether a VC is 
used for GS or BE traffic is decided centrally when the traffic routing is done.  

In our router the VC allocator practically arbitrates only BE packets. The GS 
packets are never arbitrated but directly allocated output VCs, because conflicts 
between them never occur. The VC allocator consists of one arbiter per output VC [63], 
thus pv arbiters in total. Each arbiter solves the conflicts between the requests that may 
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arrive from all the input VCs, thus pv requests at maximum. Hence, each arbiter is of 
size pv:1 – it has pv request inputs, of which at most one is granted at a time.  

3.4.2. Switch allocation 

After the packet has been allocated a VC on the destination output port, it moves 
from the VC allocation stage to the switch allocation stage. In this stage the packet 
competes for a crossbar connection to the output port. Since the output ports are shared 
between the VCs, crossbar connections are allocated not for transmission of a whole 
packet but only for transmission of a single flit. After each forwarded flit, the packet has 
to compete for a crossbar connection again. Thus, the flits from the different VCs are 
interleaved on the output port.  

The rate at which a VC is granted a crossbar connection to transmit flits determines 
the VC throughput and hence the throughput utilised by the packet traversing the VC. If 
flits from separate VCs are interleaved over a physical channel, then the VCs receive an 
equal share of the physical channel bandwidth. The share is inversely proportional to the 
number of VCs currently forwarding flits. This number is bounded by the maximum 
number of VCs on a physical channel. Therefore, the minimum throughput of a VC is 
also bounded.  

Crossbar connections are allocated to the VCs and their packets by the switch 
allocator. The complexity and performance of the switch allocator depends on the 
architecture of the virtual channel router. The symmetric architecture from Figure 3.6.a 
requires a more complex switch allocator which performance is difficult to predict, 
while the asymmetric architecture from Figure 3.6.b simplifies the allocator and makes 
it predictable. We now explain the reasons for this dependency.  

In the symmetric router architecture from Figure 3.6.a the VCs are multiplexed after 

the input buffers and the crossbar is of size p×p. When allocating connections in this 
crossbar we must consider two constraints implied by the architecture: i) an input port 
can forward at most one flit at a time, ii) an output port can forward at most one flit at a 
time. To satisfy the first constraint, the allocator needs one arbiter per input port to 
select one among the possible v input requests. To satisfy the second constraint, the 
allocator needs one arbiter per output port to select one of the possible v requests to this 
output port. Remember that at this stage the VC allocation is already done and a one to 
one correspondence between VCs on the input and output ports has been established.  

The architecture of the resulting switch allocator is shown in Figure 3.7. It has two 
arbitration stages – at the input ports and at the output ports. Each stage has p arbiters of 
size (v:1). An arbiter has v request inputs and v grant outputs. Whether a request is 
granted is indicated by activating the corresponding grant output as at most one grant 
output can be active at a time. Besides the arbiters, the switch allocator contains a fully 
connected switch controlled by the VC allocator that connects the corresponding 
request/acknowledge lines of the input and output arbitration stage (this switch serves 
only request/acknowledge signals and must not be confused with the router crossbar 
switch that switches the data).  
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Figure 3.7: Complexity of a switch allocator for the router architecture from Figure 
3.6.a 

Achieving high throughput and fairness in a switch allocator of this type has been 
studied by McKeown [54]. He proposes the iSLIP allocator, which achieves fair 
arbitration by using round-robin arbiters and employing a special synchronisation policy 
between the input and the output arbitration stages. While the proposed allocator 
prevents packet starvation and achieves high throughput, it does not guarantee equal 
bandwidth distribution between the VCs. Thus, no prediction can be made about the 
throughput allocated to a VC. Another switch allocation solution is the wrapped wave 

front arbiter [28, 77]. This type of arbiter also prevents packet starvation, but it does not 
allocate bandwidth fairly to VCs and no prediction can be made about the VC 
throughput. We may conclude that the router architecture in Figure 3.6.a leads to a 
complicated switch allocation which does not allow for achieving predictable bandwidth 
allocation. Hence, service guarantees cannot be given.  

 

Figure 3.8: Complexity of a switch allocator for the router architecture from Figure 
3.6.b  

In the asymmetric architecture from Figure 3.6.b, the VCs are connected directly to 
the crossbar and VCs on a same input port can forward flits simultaneously. Hence, no 
arbitration on the input ports is needed. Now the only constraint that must be taken into 
account is that an output port can forward at most one flit at a time. The structure of the 
switch allocator for this architecture is shown in Figure 3.8. Compared to the allocator 
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in Figure 3.7, the input stage of arbitration is removed. Now only one arbiter is 
responsible for the grant of a given request. The decision of an arbiter does not depend 
on the decision of other arbiters. Each arbiter takes its own decision how to distribute 
bandwidth between the packets. When round-robin arbiters are used, the packets are 
served fairly, starvation is prevented and the physical channel bandwidth is equally 
distributed between the VCs. Knowing the number of VCs that are used on an output 
port, we can predict what throughput these VCs provide. Therefore, with the router 
architecture from Figure 3.6.b we can have a predictable switch allocation only by 
employing round-robin arbiters. This is the architecture we use for our router.  

By combining predictable switch allocation and virtual channel reservation, the 
services provided by a router are made predictable. A network built of such routers will 
also be able to provide guaranteed services. In the following section we propose a 
method for providing GS in such network.  

3.5. Providing service guarantees at a network level 

Consider a virtual channel network with K virtual channels per physical channel. 
The physical channels are time-shared between the VCs on a flit-by-flit basis in a 
round-robin fashion. Thus, the physical channel bandwidth is equally shared between 
the VCs. Time slots are allocated only for VCs that have flits ready to be forwarded, the 
idle VCs do not use timeslots. Therefore, bandwidth is allocated only for VCs that 
currently transport data.  

Let the network be defined as a graph I=(N,C), where the graph vertices represent 
the network nodes and the edges represent the physical channels. All the physical 
channels have the same bandwidth b. If on a channel ci there are ki VCs currently 
transmitting data while the remaining K-ki VCs are idle, then each of the ki VCs is 
guaranteed a throughput of: 

(3.1) 

i

i
k

b
TH =  

This is the worst case throughput provided by the VCs. Whatever traffic load is applied 
to these ki virtual channels their throughput will not fall below THi. 

At a network level guaranteed services are provided on a connection basis. A 
connection is a path over the VCs between the source and destination nodes. The VCs 
traversed by the path are reserved and not used for other communications. Let a 
connection P traverse a sequence of H physical channels <c1, c2,… cH>. The minimal 
throughput of the connection, THP, is determined by the VC with the minimal 
throughput on the connection path.  

(3.2) 
[ ]

{ }i
Hi

P THTH
,1

min
∈

=  

Assume the network is requested to provide a connection with a minimal throughput 
THR. According to (3.2) this connection must traverse only channels ci where the 
throughput THi is greater than or equal to THR:  

(3.3) iR THTH ≤  

Substituting (3.1): 
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(3.4) 

i

R
k

b
TH ≤  

or 

(3.5) R

R

i k
TH

b
k =








≤  

Equation (3.5) provides a selection criterion for the channels traversed by the 
connection. To guarantee that the minimal connection throughput is at least THR, it must 
be provided that the connection traverses only physical channels where at most kR VCs 

are occupied. kR is a positive integer in the range 1≤kR≤K. If in (3.5) kR = 0, this means 
that the requested throughput exceeds the capacity of the physical channel (b<THR) so 
this throughput cannot be provided. The best we can do is to set kR=1 and guaratee 
throughput b. If in (3.5) kR>K, this means that the requested throughput is less than the 
granularity at which throughput is provided and we must fix kR=K. The actual minimum 
throughput bound of the provided connection is: 

(3.6) 

R

P
k

b
TH =  

Distributing physical channel bandwidth between the VC by means of round-robin 
arbitration makes the VC throughput predictable, but also implies that all VCs on the 
same physical channel guarantee equal throughput. While simple, this approach is not 
the most efficient. For example, two GS connections, one of high throughput and one of 
low throughput, with aggregated throughput that is less than the physical channel 
bandwidth, may not be fit on the same physical channel simply because they can be 
given only equal throughput guarantees. The bandwidth allocation can be made more 
flexible by employing weighted round-robin arbitration. A weighted round-robin arbiter 
distributes bandwidth between the VCs proportionally to weights assigned to the VCs. 
The weights can be chosen such that bandwidth is allocated more accurately to the 
throughput requests. However, introducing weights will complicate the arbiters and the 
router organisation.  

The latency T of a packet traversing a GS connection is the sum of two components 
[27]: head latency Th and serialization latency Ts. The packet head latency is the time it 
takes for the packet head to reach the destination, while the serialization latency is the 
time required for receiving the entire packet body at the destination, after the packet 
head has reached it. The head latency in our network is the aggregated time the header 
spends in the routers waiting for VC allocation. Since the VCs used by the GS 
connection are reserved and not used for other communications, the packets traversing 
the connection do not compete with other packets and VCs are allocated to them 
immediately. A GS packet head spends in a router a time tr, which depends only on the 
router design and does not include waiting. This time is equal for all routers; it is the 
time needed to allocate a free output VC and move the head to the next router. The head 
latency for traversing a connection of H hops is then Th=H*tr. The serialization latency 
Ts depends only on the packet length L and the connection throughput THP, Ts=L/THP. 
The maximal latency of a packet of size L on a H hop connection with minimal 
throughput bound THP is then: 



 

 56 

(3.7) 

P

r
TH

L
tHT += *max  

3.6. System level support 

Our approach for providing guaranteed services relies on VC reservation done at a 
system level. Guaranteed services are provided by means of GS connections, which are 
paths reserved over the VCs in the network. To provide a GS connection with a 
throughput THR, the system searches the network for a path over the VCs from source to 
destination node, such that all VCs satisfy (3.5). Thus, (3.5) is used as a path search 
criteria. The system reserves the VCs used in the path by changing their state from 
“free” to “occupied”, so these VCs are not considered in the next path searches. When 
the GS connection is not needed anymore the path and its VCs are released and the VCs 
state is changed again to “free”. 

The path search process is referred to as routing and is performed by a routing 
function. Searching for a path, the routing function needs to know the state of all VCs in 
the network. Thus, it requires global information about the network state. This 
information can either be acquired every time it is needed or it can be stored centrally. 
To avoid traffic and time overhead, the information is stored centrally for our system. 
The routing function is discussed in more detail in Chapter 5. 

Routing 
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Application 

Network
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R R R

R R R

R R R

PE PE PE

PE PE PE

PE PE PE

Routed 

connections
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supports

Computing
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Figure 3.9: Starting an application on the system architecture 

The routing function is called every time a connection is created. Since this adds 
time overhead, it is inefficient or even impossible to provide a new connection every 
time a GS packet is sent. Instead, connections are provided at a coarser communication 
level every time an application is started or changed, as depicted in Figure 3.9. The 
application is represented as a set of tasks that run on different processing elements and 
communication between the tasks. When the application is started, the routing function 
is called to provide GS and BE connections for the inter-task communications. These 
connections are then used for the duration of the application, which for the baseband 
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processing and multimedia applications considered in our system can be from seconds 
to hours. When the application is stopped, the connections it uses are released.  

The routing function returns a path description in the form of a VC sequence to be 
traversed. In our network this description is used as a network address. We employ 
source routing which means that the network address defines not only the destination 
node, but also the path that is taken to reach it. The path descriptions of the connections 
used by an application are loaded as network addresses in the PEs where the application 
tasks run. A task uses the addresses given to it to send data to the other application 
tasks.  

3.7. Simulations 

To validate VC reservation as an approach for providing service guarantees, we 
performed a cycle-accurate simulation of a mesh network. The network size is 6-by-6 
nodes. It is large enough to provide realistic traffic conditions (interferences between 
data streams) while it still keeps the simulation time acceptable. The simulation is 
performed in SystemC and takes a few days. The simulated network consists of routers 
that model the behaviour of our real router implementation for which the main ideas 
have been established now. For a detailed description of the implementation see Chapter 
4; here we summarise the main parameters only. The router parameters are chosen to 
provide sufficient performance for the simulated traffic at acceptable router area cost. 
The network channels are 16 bit wide. A flit is a single word size and is transmitted 
over a physical channel in a single cycle. There are four VCs on a physical channel. The 
FIFO buffers are two words deep and can store two flits. The maximum time tr for 
processing and forwarding a packet head for the GS packets is 4 clock cycles.  

The latency of a GS packet is expressed in terms of clock cycles in the following 
way. If w is the physical channel width in bits and Tc is the clock period, then the 
physical channel bandwidth is b=w/Tc. From (3.6) we then get that THP=w/(kR*Tc). 
Substituting in (3.7), the maximum latency of a packet of length L bits on a channel 
with guaranteed throughput bound THP and length H hops is  

(3.8) cR Tk
w

L
HT 








+= 4max  

For the simulation we assume a clock period Tc=3 ns corresponding to a router 
operation frequency of 333 MHz, which is in the operating range of our design (see 
Chapter 4). The physical channel bandwidth is then b=5.333 Gbit/s. 

3.7.1. Setup 

We simulate a mesh network of 6-by-6 nodes with a traffic load that mimics the 
traffic generated by streaming applications. Streaming applications typically have a 
simple pipeline structure – a number of tasks connected in a pipeline by communication 
channels. To construct a traffic pattern that models the pattern in a running system we 
use a ring graph, which can be thought of as a representation of serially connected 
streaming applications. The graph vertices represent application tasks and the graph 
edges represent the communication channels between the tasks. The number of tasks in 
the ring graph is 36, the same as the number of nodes in the simulated network. We 
randomly scatter the tasks over the network nodes, as each task is placed on a separate 
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node. The edges in the so mapped ring graph define the communication pattern used in 
the simulation. We consider random scattering to be the worst case strategy for running 
tasks on a multiprocessor system. In a real system the application tasks are placed on 
PEs such that the traffic locality is maximized, which leads to better traffic conditions. 

The network nodes, where the tasks are mapped, do not do processing but only 
serve as source and sink of data. Each node generates both types of traffic, GS and BE, 
according to the constructed communication pattern. Thus, between two communicating 
nodes there are two communication channels, one GS channel and one BE channel. 
While the ring pattern is a realistic model for GS traffic, probably it is not the most 
realistic for BE traffic. Currently we do not know what traffic pattern is realistic for the 
BE traffic because it depends very much on the application specifics, the type and the 
placement of the PE in the system, etc. However, the purpose of the BE traffic in this 
simulation is to create heavy traffic conditions and to disturb the GS traffic. We choose 
to let the BE traffic follow the GS traffic pattern, so that each GS connection is 
accompanied by a BE connection, both following the same path. Thus, the GS and the 
BE traffic is concentrated on the same paths, maximizing the interference between the 
two traffic types. 

During the simulation the intensity of the GS traffic is kept constant while the BE 
traffic intensity is gradually increased to the point of network saturation. The aim is to 
show that the guarantees given by the GS connections are not violated by any traffic 
condition. The traffic conditions are changed by changing the BE traffic intensity. 
During the simulation statistics are collected for the packet latencies, both GS and BE.  

All network nodes generate traffic of same amount and granularity. For the GS 
traffic we use the traffic characteristics of a real high-throughput baseband processing 

application – a HiperLAN/2 receiver [67]. Every 4 µs a node generates a new packet 
with a 256 Bytes payload. This equals 512 Mbit/s average throughput per node or 18.4 
Gbit/s aggregated throughput for the 36 nodes in the system. The BE traffic consists of 
packets with 10 Bytes payload. The BE packet generation period is gradually reduced in 
order to increase the BE traffic intensity. 

In our simulation setup we guarantee that GS packet latency is less than 1/3 of the 
GS packets generation period. In that way a PE spends at most 1/3 of the time receiving 
packets, at most 1/3 of the time transmitting packets and uses the remaining time for 
processing. To guarantee that latency we provide GS connections with appropriate 
throughput. We do that by routing the communication channels according to the criteria 
discussed in Section 3.5. 

To achieve a GS packet latency of 1/3 of the generation period (4µs/3=1.3 µs), the 

GS connections must have a throughput of at least 256B/(4µs/3)=1.536 Gbit/s. This is 
the throughput THR we request for the GS connections. It is found from (3.5) that kR=3, 
hence a GS must traverse only physical channels where at most 3 VCs are used. The 
maximal message distance in a 6-by-6 mesh network is Hmax=10 hops. According to 

(3.8) the maximal latency of a GS packet is 424 clock cycles or 1.272 µs, which is less 

than the required 1.3 µs. To provide the requested throughput, we route the GS and BE 
connections such that no more than three VCs are used on the physical channels (kR=3). 

3.7.2. Results 

The simulation results are presented in Figure 3.10. The graph there illustrates how 
the latency of the GS and BE packets depends on the offered BE load. The offered BE 
load is given per PE, all PEs generate the same amount of data. The packet latency is 
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given over all connections in the network. For the GS packets we give the maximal and 
the mean latency. The horizontal line represents the 424 cycle latency guarantee for the 
GS packets.  
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Figure 3.10: Packet latency vs. offered BE load; buffer size of 2 flits 

When the offered BE load is low, the latency of the GS packets is smaller than the 
guaranteed. The reason is that the GS traffic utilizes the bandwidth not used by the BE 
traffic. The latency of the GS packets is higher than the latency of the BE packets 
because the GS packets (256B) are longer than the BE packets (10B). The GS packets 
latency is dominated by the serialization latency. With the increase of the BE load, the 
latency of the GS packets also increases and at some point the GS packets maximal 
latency reaches a point of saturation. A further increase of the BE load increases the GS 
packets mean latency, but not the maximal latency. The latency of a GS packet never 
exceeds the guaranteed latency. The maximal latency of the GS packets never reaches 
the latency bound because the bound is given for worst case conditions, assuming all the 
kR VCs constantly transmit data. In our setup this is not the case – GS packets are 
transmitted 1/3 of the time.  

The network saturates for BE traffic when the offered BE load reaches about 0.09 
of the channel capacity. This throughput is rather low, but it is enough to handle the 
amount of BE traffic generated in our system. The traffic generated by the HiperLAN/2 
receiver, and by baseband processing applications in general, is dominated by the GS 
traffic. About 90% of the generated traffic consists of GS streams and only 10% 
consists of fine granularity BE messages. For the HiperLAN/2 receiver, this can be 
estimated to an average of 512 Mbit/s GS traffic and 57 Mbit/s BE traffic per PE. Thus, 
the expected BE traffic is only 0.01 of the channel capacity b=5.333 Gbit/s or less then 
15% of the BE saturation throughput in Figure 3.10. This means that the network will 
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operate in the left most part of the graph and the low saturation throughput for the BE 
traffic does not cause problems for the considered applications.  
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Figure 3.11: Packet latency vs. offered BE load; buffer size of 4 flits 

The same simulation was repeated for a network with a buffer size of 4 flits. The 
results are shown in Figure 3.11. It shows that enlarging the buffers mainly results in an 
increase of the BE saturation throughput, from 0.09 to 0.12. 

3.8. Comparison  

Table 3.1 and Table 3.2 compare our virtual channel network-on-chip (VCNoC) 
with the NoCs reviewed in Chapter 2 which provide GS and BE services. Table 3.1 and 
Table 3.2 are copies of Table 2.2 and Table 2.3 extended with a row describing our 
VCNoC. The performance figures will be discussed in Chapter 4.  

Table 3.1 compares the techniques employed by the networks. The MANGO 
network is the solution which is closest to our VCNoC. It employs virtual channel flow 
control and uses similar approach for providing service guarantees. The main 
implementation difference and certain advantage for MANGO is that it is implemented 
using asynchronous techniques, in contrast to our synchronous implementation. Thus 
MANGO shows that it is possible to design a virtual channel network using 
asynchronous design techniques. 

The main functional difference between MANGO and VCNoC is in the way in GS 
connections are configured. In MANGO, the configuration of a GS connection is done 
by sending explicit configuration BE packets to all the routers along the GS connection. 
The same approach is used by the network of Wolkotte. Its main drawback is that the 
connection configuration time cannot be guaranteed because BE packets are used. By 
contrast, in our network a connection is configured by the source node simply by 
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injecting a packet header in the network. The header follows a preliminary reserved path 
to the connection destination node and the time it takes to reach it is bounded and 
guaranteed.  

Table 3.1: Comparison of employed network techniques;  
NA=Not Applicable, VCNoC=Virtual Channel NoC 

NoC
Provided 

services
Topology Flow control Routing

Area 

[mm2]

F 

[MHz]

Tech. 

[mm]

Wolkotte GS, BE
2-D mesh, 

Ring

Circuit switching, 

cut-through 

(serial)

NA 0.05 1000 0.13

Ǽ thereal 

Distrib.
GS, BE Any

TDM, 

Wormhole

contention-free 

routing, source routing
0.24 500 0.13

Ǽ thereal 

Centr.
GS, BE Any

TDM, 

Wormhole

contention-free 

routing, source routing
0.17 500 0.13

Ǽ thereal 

GS only
GS Any TDM

contention-free 

routing
0.03 1000 0.13

Nostrum GS, BE 2-D mesh TDM
contention-free 

routing, diflection 
-- -- --

MANGO GS, BE grid-type Virtual channels source routing 0.19 515* 0.12

 

In Nostrum GS connections are also opened by the source node, but guarantees can 
be claimed only during the network initialization when the system is started. In our 
network GS connections can be opened and closed at run-time.  

In Ǽthereal, like our in network, the configuration is done by GS packets and hence 
the configuration time can be guaranteed.  

Table 3.2: Comparison of network characteristics; 
VCNoC=Virtual Channel NoC 

NoC GS approach

Applicable 

in GALS 

systems

GS connection is 

configured by

GS 

packetisation  

required

Combining 

GS and BE

Wolkotte
Circuit 

reservation
yes BE packets yes

Separate 

networks

Ǽ thereal
T ime-slot 

reservation
no GS packets yes

Separate 

router parts

Nostrum
Time-slot 

reservation
no The source node yes Single router

MANGO
VC 

reservation
yes BE packets no 

Separate 

router parts

VCNoC
VC 

reservation
yes The source node No Single router

 

Besides the functional differences between MANGO and our VCNoC there are also 
architectural differences. In the MANGO network the router consists of two separate 
parts, one that processes the BE traffic and one that processes the GS traffic. A similar 
router structure is used in the Ǽthereal network. With such a router organization the GS 
and BE traffic use separate router resources, thus the total amount of needed resources 
increases. For example, in the MANGO router the number of VCs is doubled and 
divided in two sets, one set used for GS and one for BE traffic. The division of 
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resources also requires that a choice is made at design time about the amount of 
resources dedicated to both traffic types.  

Our network router does not have separate parts for the different traffic classes. 
Both types of traffic are processed by a single routing solution and use common 
resources. Thus the total amount of resources is minimised. Whether a resource is used 
by GS or BE traffic is decided dynamically at run-time. There is no difference between 
the GS and BE traffic at router implementation level. Hence, no choices based on traffic 
specifics have to be made at design time. The amount of resources allocated to different 
traffic types is decided at run-time and can be dynamically adapted to the application 
demands. 

3.9. Conclusion 

In this chapter we present a solution for a virtual channel network-on-chip 
(VCNoC) able to support two traffic classes - guaranteed service (GS) and best effort 
(BE) traffic. We propose a router architecture and a resource reservation scheme, which 
in combination enable our network to provide GS as well as best effort services. Our 
network is one of the first VCNoC providing GS services and one of the few to provide 
an upper bound on the time for opening a GS connection. The router architecture we 
propose is unique with that it supports GS and BE traffic in an integral way instead of 
combining two separate architectural solutions. 

Our VCNoC is applicable in systems where the GS traffic is dominated by intensive 
streams and the BE traffic is composed mainly of low intensity and fine granularity 
messages. This is the type of traffic expected in multi-processor system-on-chip for 
streaming applications (communication and multimedia applications). Compared to 
other networks, our network implies fewer restrictions on the traffic injected in it. Data 
streams do not need to be split into packets and later reassembled again, but are directly 
transported.  

The resource reservation scheme we propose for providing GS services requires a 
central system organisation. This is the system organisation required also by the other 
proposed NoC solutions.  
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Chapter 4  
 
Implementation* 

In this chapter we discuss design and implementation issues 

of an asymmetric virtual channel router architecture. We 

propose an implementation that makes the implementation 

area competitive with the area and performance of the 

symmetric architecture.  

4.1. Introduction 

In Chapter 3 we choose an asymmetric architecture for a virtual channel router 
instead of the symmetric one, because the asymmetric architecture simplifies the router 
arbitration and makes the router performance predictable. However, the asymmetric 
architecture requires a larger crossbar switch and for that reason it is usually regarded as 
an area inefficient router solution. Since the network-on-chip (NoC) implementation is 
area constrained, it is important to clarify what the implementation area cost of a router 
is and to select the router parameters such that the required network performance is 
provided at a minimal area cost. 

This chapter deals with the implementation of our network router. We simplify and 
optimise the implementation of the asymmetric router architecture to make it more area 
efficient. Firstly, we restructure the router implementation in order to avoid overlapping 
functionality and to reduce the router size. Secondly, we propose a simplified 
implementation for the VC allocator. The synthesis results reveal that the area and 
performance of the asymmetric architecture are competitive with those of the symmetric 
architecture (also implemented by us).  

We also explore the scalability of the proposed architecture by comparing synthesis 
results for different combinations of route parameters, e.g. buffer size, number of VCs, 
and channel width. We discuss how the router performance and implementation area 
depends on the different parameters.  

4.2. Implementation details 

In this section we present implementation details of our virtual channel NoC 
(VCNoC). We discus the implementation of the asymmetric router architecture and 
propose an optimised implementation that minimises the area of a virtual channel 
router. 

                                                           
* Major parts of this chapter have been presented at the IEEE International System-on-Chip Conference [5] 
and at the EUROMICRO Symposium on Digital System Design [1]. 
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4.2.1. Flit and packet format 

The basic unit of information recognized by virtual channel flow control is the flit. 
Flits in our network are a single data word. The flit format is shown in Figure 4.1. It 
consists of w bits of transported data and a two-bit field coding the flit type. The flit 
types are: Header flit (HF), Data flit (DF), Command flit (CF) and Tail flit (TF). The 
header and the tail flits denote respectively the beginning and the end of a packet, while 
the data and control flits carry the packet payload. The command flits utilize the fourth 
state of the two-bit field for flit type. The network does not distinguish between data 
and control flits; it treats both as flits that transport payload. In this way the network can 
transport two types of data, for example data and commands, together in a packet 
practically at no additional cost. From our experience, we find this network feature 
useful and convenient to support the higher levels of the system organization. 

 

Figure 4.1: Flit format 

Our network transmits a flit on a physical channel in a single clock cycle. As 
discussed in Chapter 3, making the flit longer is advantageous when the router operation 
rate is slower than the channel operation rate and high channel utilization is a primary 
goal. For networks of such a small scale like the on-chip networks this is not the case. 
Since the router implementation is fast and the network channels are inexpensive, high 
channel utilization is not a primary goal. 

Data is transported over the network in packets constructed of flits. A packet 
consists of three parts: header, body and a tail. The packet header carries routing 
information. The packet body carries the transported data, or the payload. The packet 
tail just indicates the end of the packet. The packet is constructed of a sequence of flits 
of different type. The permitted flit sequence constructing a packet is:  

 
Packet ::= Header Body Tail 
Header ::= HF

+ 

Body ::= (DF|CF|HF)
*
 

Tail ::= TF 

 
The packet header typically consists of multiple header flits. The number of header flits 
equals the number of routers traversed from source to destination. The header flits 
configure he traversed routers. In each router the first header flit of a packet is 
examined, routing information is extracted from it and the flit is discarded. The routing 
information determines on which output VC the packet is forwarded. Thus, the header 
flit adds one more VC to the packet path. The routing information must lead the packet 
to its destination. The flits arriving in the router after the first header flit, just follow the 
path. The packet body may contain any flit type except a tail flit. The tail flit terminates 
the packet and releases the reserved path. The packet body may contain any number of 
flits, including no flits at all, in which case no payload is transported.  
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4.2.2. Channel interface 

The physical channels are the medium on which flits are transferred between the 
routers. The channel interface between two routers is presented in Figure 4.2. Let K be 
the number of VCs on a physical channel and w be the data width. The flits are 
transported on a unidirectional channel of a size 2+w bits which we call the Flit Bus. On 
which VC the current flit is being transmitted is indicated by the signal VC_sel of size 

log2K bits. The signal Valid indicates whether a flit is transmitted in the current clock 
cycle. The signal Ready goes in reverse direction. It returns the flow control credits 
from the receiving router to the transmitting router. The credits are carried in parallel. 
The signal consists of K bits, each bit corresponding to a VC. Each bit indicates whether 
there is free space in the receiving FIFO buffer. By sending the credits in parallel 
instead of coding and sending them sequentially on a narrower channel, we simplify the 
design avoiding the coding and decoding logic. We speed up the credit regeneration 
process, at the cost of utilizing the larger amount of the available wires. The total 
amount of wires needed to build the channel is: 

(4.1)   12log_ 2 ++++= wKKwiresnum  

For example, with four VCs (K=4) and 16 bit data width, the number of wires needed to 
build the interface is 25.  

The presented channel interface is parallel and unidirectional. There are two such 
channels between two neighbouring routers – one channel in each direction – to provide 
full-duplex communication.  

 

Figure 4.2: Channel interface between two routers (K = number of VCs, w = data width) 

An example timing diagram of the channel interface is given in Figure 4.3. It shows 
a number of flits sequentially transmitted over the channel. It is assumed that there are 
four VCs per physical channel. In cycle i, Flit1 is transmitted on VC 0. In that cycle the 
signal Ready indicates that there is free space in all VC FIFOs. Since enabled by the 
Valid signal, the flit is written in the FIFO of VC 0 on the rising edge at the end of the 
cycle. In the next cycle, i+1, another flit is transmitted on VC 0. In cycle i+2, the Ready 
signal indicates that there is no free buffer space in the FIFO of VC 0. The Valid signal 
is deactivated and no flit is transmitted in this clock cycle. In cycle i+3 the buffer space 
is available again and Flit 3 is transmitted on VC 0. In cycle i+4 the buffer of VC 0 is 
full again, but a flit is transmitted on another VC for which buffer space is available, the 
VC 3.  
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Figure 4.3: An example timing diagram of the channel interface 

4.2.3. Input controller 

For every VC at the router inputs there is a FIFO buffer and control logic –together 
they form an input controller (see Figure 4.4). There is an input controller for every VC 
at every input port of the router. When a flit arrives on an input port, it is demultiplexed 
to the respective VC and processed by its input controller. The input controller buffers 
the incoming flits and examines them. It stores the current VC state and interfaces with 
the VC allocator and the switch allocator to requests the resources required for 
forwarding the flits – a VC and a switch connection. 

The functionality of our input controller is closely coupled to the functionality of 
the VC allocator and the switch allocator. To understand the complete role the input 
controller plays in the router operation, the router VC and switch allocation needs to be 
known. For that reason here we only introduce the architecture of the input controller 
and part of its functionality, while the full functionality will become clear later when the 
allocation is presented.  

The architecture of our input controller is presented in Figure 4.4. The controller 
consists of a FIFO buffer, control logic Ctrl, two registers ID and dest and a comparator 
cmp. The control logic implements the main functionality of the input controller and 
controls the VC state. The two registers and the comparator take a part in the VC 
allocation and the switch allocation; their function will be explained later in Section 
4.2.4.  

Upon its arrival a flit is stored in the FIFO. The FIFO sends back information to the 
previous router whether there is free buffer space available; this is the signal Ready[i], 
which directly drives one bit of the signal Ready in the channel interface. If a flit is 
received when there is no free buffer space, the flit is dropped. However, during normal 
operation the flow control does not allow flits to be sent when there is no free buffer 
space in the receiving router.  
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Figure 4.4: Architecture of an input controller 

The head of the FIFO (its output) is constantly monitored by the control logic Ctrl. 
The control logic consists of a Finite State Machine (FSM) and some glue logic. The 
state diagram of the FSM is shown in Figure 4.5. Its states correspond to the possible 
VC states that basically repeat the stages of packet processing. After reset the VC is in 
an Idle state, which indicates that no packet is using the VC and the VC is free. In that 
state the FSM monitors the type of the flits at the FIFO head, waiting for a header flit to 
denote the beginning of a packet. All the flits of type different from HF, i.e., DF,CF,TF, 
are discarded from the network. The discarded flits are read out of the FIFO without 
being forwarded. The discarding prevents the VC from blocking when incorrect packet 
formats are received. When the first header flit appears at the FIFO head, the FSM 
moves to the next state VC allocation (VC alloc). At the same time the data carried by 
the header flit is loaded in the ID and the dest registers and the header flit is discarded.  

 

Figure 4.5: A virtual channel state diagram 

The format of a header flit is shown in Figure 4.6. Its data part contains three fields. 
The fields p_sel and v_sel contain respectively the number of the output port and the 
VC on which the packet has to be forwarded. These fields are loaded into the 
destination register dest. They appear directly on the output signals P_SEL and V_SEL 
showing the allocators where the packet has to go. The size of the field v_sel and the 
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signal V_SEL is log2K bits. The size of the field p_sel and the signal P_SEL is log2P 
bits, where P is the number of router output ports. For our router with K=4 and P=5 the 
size of the fields v_sel and p_sel is respectively 2 and 3 bits. The field ID contains an 
identifier, which is loaded in the ID register of the input controller. The identifier takes 
part in the VC allocation and its exact function is explained in Section 4.2.4.  

 

Figure 4.6: Header flit format 

While it is in VC allocation state, the input controller neither forwards nor discards 
flits from the FIFO. Instead, it waits until the VC allocator allocates the virtual channel 
v_sel on output port p_sel. The input controller interfaces with the VC allocator through 
the signals VACK and VHOLD. The signal VACK notifies the input controller that the 
requested VC (selected by P_SEL and V_SEL) is currently free. The signal VHOLD is 
activated to indicate that the input controller currently holds the requested VC. The two 
signals together with the comparator cmp and the register ID take part in the VC 
allocation. Details about the VC allocation are given in the following subsection.  

When the VC is allocated, the FSM moves to the next state Forwarding (Fwd). In 
the Forwarding state, the input controller forwards all the flits arriving in the FIFO to 
the VC selected by the content of the destination register dest (virtual channel v_sel on 
port p_sel). The controller interacts with the switch allocator through the signals SREQ 
and SACK. The request signal SREQ indicates that there is a flit in the FIFO to be 
forwarded. The switch allocator responds with the acknowledge signal SACK indicating 
that a crossbar connection is allocated and the flit can be forwarded in the current clock 
cycle. The acknowledge signal is issued only when there is free buffer space in the next 
router.  

In the Forwarding state the control logic monitors the type of the flits being 
forwarded, waiting for a tail flit. When a tail flit is forwarded, the FSM moves to its Idle 
state waiting for the next packet.  

4.2.4. VC allocator 

Figure 4.7 presents a straightforward implementation [63] of the VC allocator as 
discussed in Section 3.4.1. The allocator operates as follows. When a packet arrives in 
an input controller i the controller activates its signal REQ[i] to request a VC on an 
output port. Which VCs is requested is indicated by the signal SEL[i]. The VC allocator 
receives the request and demultipexes it to the requested output VC. At each output VC 
there is an arbiter Aj that arbitrates between the possible multiple requests (up to pv). 
Hence, as shown the allocator contains pv demultiplexers of size 1:pv and of pv arbiters 
of size pv:1 (one of pv). However, Figure 4.7 does not show all the details of the VC 
allocator. In addition to what is shown, an acknowledge signal must be returned 
(multiplexed back) for each request and the arbiters must consider the current state of 
the output VCs – whether they are occupied of free. Hence the VC allocator is even 
more complex than what is shown in Figure 4.7. 
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Figure 4.7: A straightforward implementation of a VC allocator 

Since designed for the worst case, the arbiters are rather large – they arbitrate over 
the maximum of pv requests. All the arbiters together operate on (pv)2 request signals in 
total. Out of these signals, at most pv can be active at the same time. For example, in a 
router with 5 ports (p=5) and 4 VC (v=4) only 20 request signals out of the total 400 can 
be active simultaneously. Therefore, the implementation shown in Figure 4.7 contains 
redundancy.  

We propose an alternative implementation that reduces the redundancy and 
respectively the complexity of the allocator. In contrast with the straightforward 
implementation, we avoid the large arbiters at the output VCs. Instead, the arbitration 
takes place in the input controllers. Each input controller contains a comparator and a 
register named ID (see Figure 4.4). These are the additional components needed to 
perform the arbitration. When a new packet arrives, the ID register is loaded, as 
described in section 4.2.3, with an identifier. We guarantee at a higher system level that 
the packets competing for the same output VC have different identifiers. Which VC is 
requested is indicated by the signals P_SEL and V_SEL of the input controller. The 
signal VACK to the input controller indicates whether the requested VC is free. In the 
router there is a central counter that runs constantly. Its current value is supplied on 
input Arb_cntr of all input controllers. When VASK signals that the requested VC is 
free, the input controller compares the counter value with the ID identifier. If the 
comparison is successful, the controller assumes that it wins the arbitration and that the 
output VC is allocated to it. The controller indicates this decision by activation the 
signal VHOLD after which it proceeds with the packet forwarding. The signal VHOLD 
stays active until the whole packet is forwarded and the output VC is released.  

The uniqueness of the identifiers guarantees that only one of the controllers 
competing for the same VC assumes that it wins the arbitration and activates its 
VHOLD signal. Hence, conflicts are avoided. The counter is sampled when the 
requested VC becomes free and in general the counter value is non-deterministic at that 
time. Hence, no preferences are given to any of the competitors and the arbitration is 
fair. It is possible, although with very small probability, that a packet has a bad luck and 
does not win the arbitration for a long time. Such situation is acceptable for the BE 
traffic since no guarantees are given. For the GS traffic such situation never occurs 
because no VCs are shared and arbitration is never needed.  
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It may happen that at the moment when the requested VC becomes free the counter 
value does not equal any of the packet IDs. In that case no VC is allocated at the first 
clock cycle, but since the counter value increments constantly with the clock, in several 
clock cycles it will reach some of the ID values and the VC will be allocated. If the 
counter is n bits long, the VC will be allocated in at most 2n clock cycles. To provide 
that all ID values will be reached by the counter, the ID size must be less than or equal 
to the size of the counter. Because of the requirement for uniqueness, the size of the ID 
determines the maximal number of packets that may be competing for the same VC. 
Thus, the size of the ID is a trade-of between the maximal number of BE paths that can 
share the same VC and the maximal time for VC allocation (excluding waiting). Our 
experience shows that a 2 or 3 bit identifier satisfies the needs for VC sharing. When the 
identifier is two bits long, each input controller is equipped with a two bit ID register 
and a two bit comparator to perform the arbitration. Their complexity is less than the 
complexity of the arbiters in the straightforward design, discussed earlier. The worst 
case time for VC allocation is 4 cycles.  

The externally loaded unique identifiers can be avoided by numbering all the input 
controllers and using the controller number instead of identifiers. However this will 
increase the worst case time for VC allocation to pv clock cycles.  

To complete the VC allocator design, it remains to show how the signals VACK to 
the input controllers are generated. The signal VACK returned to an input controller 
indicates whether the VC selected by the controller signals P_SEL and V_SEL is 
currently free. The VC is free when none of the requesting input controllers has an 
active VHOLD signal.  

The signals VHOLD from all input controllers are demultiplexed to the 
corresponding output VCs selected by the signals P_SEL and _SEL, in the same way as 
in Figure 4.7 the signals REQ[i] are demultiplexed to the VCs selected by the signals 
SEL[i]. At each output VC, instead of an arbiter there is an OR element that logically 
OR’s the VHOLD signals. These are the VHOLD signals of all input controllers 
selecting that particular VC. If none of these signals is active, then the VC is free. The 
inverted output of the OR element is then the VACK signal. It is multiplexed back to 
the input controllers requesting the VC.  

In the input controllers, arbitration takes place only when the VACK signal is 
activated, showing the requested VC is free. This happens only when all input 
controllers requesting the same output VC have their VHOLD signals deactivated. Since 
in a clock cycle only one of these controllers can win the arbitration, only one of their 
VHOLD signals can become active in a clock cycle. Activating one of the VHOLD 
signals deactivates the VACK signals and ends the arbitration until the output VC is 
released again and the VHOLD signal is deactivated. Therefore, at most one input 
controller may attain the VC at a time and conflict free arbitration is guaranteed.  

4.2.5. Switch allocator 

In Chapter 3 we chose the asymmetric router architecture which for ease of 
reference we show again in Figure 4.8. The architecture consists of three main blocks a 
VC, allocator, a switch allocator and a crossbar switch. (Besides that each input VC has 
an input controller, but for picture clarity we do not show them.). All the three blocks 
perform massive signal switching. As we saw in the previous section, the VC allocator 
contains a switch of size (pv)2 for all the signals VACK and VHOLD. The switch 
allocator (see Figure 3.8) also contains a switch of size (pv)2 for the signals SREQ and 
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SACK. The crossbars switch is of size p2
v and switches data from input to output ports. 

All this switching is mainly controlled by the signals P_SEL and V_SEL from the input 
controllers selecting where the packets are forwarded. Hence, we can expect a repeated 
functionality in the switching circuits in the three blocks. 
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Figure 4.8: Selected router architecture 

The three block are also closely functionally connected as they hierarchically 
control each other as seen in Figure 4.8.. The VC allocator controls the switch allocator, 
enabling only packets with already allocated VCs to be served. The switch allocator 
controls the crossbar switch, determining only conflict free configurations.  

Because of the repeated functionality in the three blocks and because of the tight 
interface between them, it may be expected that if implemented as separate blocks like 
in Figure 4.8, the design will become inefficient in terms of area. Instead, we propose to 
integrate the large switches in the VC allocator, the switch allocator and the crossbar 
switch into a single switching structure. Thus we avoid the repeated functionality and 
the complex interfaces between the blocks.  

 
The router structure we implement is shown in Figure 4.9. The figure shows only 

the control paths, while the data paths are omitted for clarity. The switching parts of the 
VC allocator, the switch allocator and the crossbar switch are merged in a single 
switching unit. The round-robin arbiters (RRA) of the switch allocator are shown 
separately outside the switch – one arbiter per output port. The switching unit has a 
crossbar structure. The rows in the crossbar correspond to input VCs and are connected 
to the input controllers. The columns in the crossbar correspond to output ports and are 
connected to the RRAs and the output ports of the router. Thus, the crossbar has pv 
rows and p columns. 
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Figure 4.9: Implemented router structure. RRA – round-robin arbiter 

Each cross point in the crossbar connects an input controller to an output port. The 
cross points, however, are not simple switching elements but contain also some control 
logic. Let us assume that there are four VCs per port. The structure of the cross point 
then is shown in Figure 4.10 and Figure 4.11. The two figures present the part of cross 
point functionality supporting the switch allocator and the VC allocator respectively. In 
the crossbar they are implemented together, but for clarity we present and discuss them 
separately.  

The cross point functionality related to the switch allocator is shown in Figure 4.10. 
The signals from an input controller (see Figure 4.4) are connected to all cross points in 
the corresponding row. In each cross point a comparator cmp1 compares the port select 
signal P_SEL with a constant P representing the crossbar column number. Thus, the 
comparator recognizes whether the input controller wants to forward data to that output 
port. If the comparison is successful, the cross point is activated. For a five-port router, 
the cmp1 is simply a three-input gate. 

In the active cross point, a demultiplexer dmx switches the request signal SREQ to 
one of four request lines running along the column. Each request line corresponds to an 
output VC and collects the switch allocation requests SREQ to that VC from all cross 
points in the column. The request lines are constructed as OR-chains running along the 
column. To which request line the signal SREQ is switched is determined by the signal 
V_SEL. Since only one input controller may use an output VC at a time, a request line 
may collect at most one SREQ signal. 

The column request lines generate the signals sreq0 to sreq3 which show whether 
there is any request to the corresponding output VC. The signals sreq0 to sreq3 are 
processed by the round-robin arbiter (RRA) of the corresponding output port. The RRA 
is also connected to the output port and monitors the Ready signals from the next router. 
The Ready signals indicate whether buffer space is available in the next router. Thus, 
the arbiter considers only the request for VC with available free buffer space in the next 
router. Every clock cycle the arbiter grants one request, if any. The granted VC number 
is indicated by the signal vc_sel which is sent back along the crossbar column. The same 
signal drives the signal VC_sel at the router output port (see Figure 4.2) indication on 
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which VC flit is being sent. The arbiter also drives the signal Valid at the output port 
indicating that a request is granted and a flit is forwarded in the current clock cycle. 

In the active cross points along the crossbar column, a comparator cmp2 monitors 
whether the number of the VC currently granted by the arbiter (vc_sel) equals the VC 
requested by the cross point (V_SEL). When the comparison succeeds, the cross point 
connects the input data bus (Flit) to the output port bus and a flit is forwarded. An 
acknowledgement signal is sent to the input controller on the acknowledge line SACK 

running along the crossbar row. The acknowledgement line is constructed as an OR-
chain that collects the acknowledgement signals from all cross points in the row. Since 
only one cross point can be active in a row, at most one acknowledgement signal is sent 
on the acknowledgement line. 
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Figure 4.10: A cross point in the crossbar switch – only the functionality supporting the 
switch allocation and data switching  

The cross point, as shown in Figure 4.10, switches only the forwarded data and the 
switch allocator signals, but not the VC allocator signals. The cross point functionality 
needed to support the VC allocation is shown in Figure 4.11. The comparator cmp1 is 
the same comparator as in Figure 4.10, which activates the cross point. In an activated 
cross point, the signal VHOLD is switched to one of the VC state lines running along 
the column. To which state line the signal is switched is determined by the signal 
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V_SEL. The state lines are organised as an OR-chains that collect the signals VHOLD 
from all cross points in a column. The VHOLD signal shows whether the input 
controller currently holds the output VC it requests. Hence, the state line shows whether 
the corresponding output VC is occupied or free. Since an output VC is allocated to 
only one input controller, only one of the VHOLD signals switched to a VC state line 
will be active at a time. 

At the end of the OR-chains the state lines are inverted and sent back along the 
column. The new signals, named vack0 to vack3, indicate whether the corresponding 
VC is free. In the active cross points along the crossbar column, one of the signals vack0 
to vack3 is selected, again by V_SEL, and sent along to the input controller along the 
VACK line. The VACK line is an OR-chain that collects the VACK signals from all cross 
points in the row. Since only one cross point can be active in a row, only one VACK 
signal is sent on the OR-chain. The VACK signal at the end of the line indicates to the 
input controller whether the output VC it requests is currently free.  
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Figure 4.11: Additional functionality in a cross point needed for support of the VC 
allocation  

By combining the functionality shown in Figure 4.10 and Figure 4.11 in a single 
cross point, we can build a crossbar capable of switching all the signals needed for the 
VC allocator, the switch allocator and data forwarding. The proposed design consists of 
many small components uniformly distributed in the crossbar. As we shall see in the 
next section, this integrated design results in a more area efficient implementation than a 
design, where the VC allocator, the switch allocator and the crossbar switch are built as 
separate, complex, but tightly interconnected blocks.  
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4.2.6. Round-robin arbiter 

The switch connections for forwarding flits are allocated to input controllers by 
round-robin arbiters (RRA). Every clock cycle a round-robin arbiter grants one of the 
possible multiple requests on its inputs. The requests are granted in circular priority 
order as the request granted in the current cycle has the lowest priority in the next cycle. 

We use the implementation of a round-robin arbiter proposed by Gupta [35]. To 
explain it, we first introduce the static priority arbiter shown in Figure 4.12.a. The static 
priority arbiter grants requests according to static priorities assigned to them. The 
requests arrive on the arbiter inputs ri and the grant is issued on one of the outputs gi. In 
the arbiter shown in Figure 4.12.a, the request inputs with lower i have higher priority. 
The arbiter is organized as a priority chain. The higher end of the chain, which has the 
highest priority, is set to constant ‘1’. A carry signal ci is transmitted down on the chain 
links, showing whether a request of higher priority has been granted.  

The variable priority arbiter, shown in Figure 4.12.b, is derived from the static one 
by connecting the priority chain in a ring. Switching (OR) elements controlled by the 
priority inputs pi, are added between the links in the chain. The priority inputs set the 
current request priorities. At any time there is only one priority input that is active and 
its position determines the position of the request input with highest priority. The active 
priority input drives the corresponding OR element such that the priority ring is broken 
in a chain again. Thus, the higher end of the chain and the request priority order is 
determined dynamically by the priority inputs.  
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Figure 4.12: Priority arbiters 

A Round-robin arbiter is constructed from the variable priority arbiter by using the 
priority control circuit presented in Figure 4.13. The current state of the priority inputs 
is a function of the last grant given by the arbiter. The current request priority state is 
stored in a vector of flip-flops. The state is changed only when a request is granted. The 
new priority state is derived by rotating the current grant vector g with one position, 
such that in the next cycle the currently granted request input has the lowest priority. 
The output valid indicates whether a grant is issued in the current cycle. The signal 
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vc_sel is derived by encoding the grant vector. Upon circuit reset one of the flip-flops 
must be set while the other flip-flops are cleared.  

 

Figure 4.13: Priority control in a Round-robin arbiter 

4.3. Synthesis results 

The design of a router described in the previous section was modelled in VHDL and 
synthesised. The router design parameters: buffer size (B), number of VCs per port (V) 
and width of the network channel (W), are left as model parameters. We synthesised the 
router for a number of combinations for the design parameters values and observe how 
separate parameters influence the implementation results (area and maximal operating 
frequency). We also model the symmetric router architecture and use its synthesis result 
as a reference for comparison. Synthesis was preformed with the Synopsys Design 

Compiler using the TSMC 0.13µm library*. 
The area results for different combinations of parameters are presented in Figure 

4.14. The maximal operating frequency for the same combinations of parameters is 
presented in Figure 4.15. In each of the three graphs shown in the figures, we vary one 
of the parameters B, V or W, while the others are fixed. As a basic router configuration 
we take B=2 flits, V=4, W=16 bits. The varied parameter can take the following values: 
B={2,4,8} flits, V={2,4,8}, W={8,16,32} bits. Each bar in the graphs in Figure 4.14 
presents the cell area for the given router configuration. The area has three contributing 
parts: area taken by the input controllers, area taken by the crossbar and area taken by 
other circuitry which includes the RRA arbiters and some glue logic.  

The first graph in Figure 4.14 presents the router area for three different buffer 
sizes. The buffer size influences only the area of the input controllers. We expect that 
the area for the input controllers increases linearly with the buffer size, while the area 
for the other router parts remains the same. This is confirmed by the results shown by 
the graph. Doubling the buffer area almost doubles the area of the input controllers. 
There is a small additive component to this area which is due to the additional state and 
control logic in the input controllers 

                                                           
* Both products are furnished with a license from Synopsys (Northern Europe) Limited. 
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Even for the smaller buffer size of two flits, a significant part of the area is 
occupied by the input controllers, dominated by the buffer area. Thus, the network 
buffers are expensive in terms of area and must be minimised. As discussed in Chapter 
3, the performance gain from an increased buffer size is a higher saturation throughput 
for the best effort traffic. However, in the same chapter we saw that the intensity of the 
BE traffic in our network is small; even with 2-flit buffers the BE traffic utilises less 
than 15% of the saturation throughput. Thus, we minimise the buffer space without 
sacrificing performance.  

The second graph in Figure 4.14 shows how the router area changes with the 
number of VCs. The number of VCs determines the number of input controllers, the 
number of crossbar inputs and the size of the arbiters. The number of input controllers 
and the size of the arbiters changes linearly with the number of VCs, so does their area. 
The number of crossbar inputs also increases linearly with the number of VCs. 
However, the number of request/acknowledge lines along the crossbar columns (the OR 
chains) is also determined by the number of VCs. Therefore, the area of the crossbar 
increases more than linearly but less than square with the number of VCs. 

More VCs per router port means that more guaranteed service (GS) connections can 
be opened simultaneously in the network. Also the bandwidth of the physical channels 
is distributed at a finer grain. However, it must be noted in Figure 4.15 that with the 
increase of the VC number, the router performance deteriorates. 
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Figure 4.14: Area of a router for various values of the design parameters (B=buffer size, 
V=number of VCs per port, W=channel width) 

The third graph in Figure 4.14 shows how the router area changes with the channel 
width. Channel widening increases linearly the FIFOs size and respectively the area of 
the input controllers. The amount of glue logic also increases linearly. In the crossbar, 
the number of bits per channel determines the number of tri-state buffers per cross point 
and the number of wires in the columns and rows. Since the tool reports only cell area, 
we observe only the linear dependency between the channel width and the number of 
tri-state buffers. In general, crossbars tend to be wire dominant However, in our design 
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we merge the crossbar with two control blocks (VC allocator and switch allocator) and 
so introduce control functionality uniformly distributed among the cross points and the 
crossbar area. Thus, we expect that our crossbar is not wire dominant and the reported 
cell area is near the actual crossbar area.  

While the channel widening increases the amount of data transmitted in a clock 
cycle, it does not noticeably affect the router operating frequency. Therefore, widening 
the physical channels effectively increases the network throughput. Doubling the 
channel width doubles the router performance, but the router area increases less than 
two times. Therefore, considering the performance-area ratio, the channel width is 
beneficial way of increasing router performance. 
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Figure 4.15: Maximal operating frequency of a router for various values of the design 
parameters (B=buffer size, V=number of VCs per port, W=channel width) 

In Figure 4.15 we see how the maximal router clock frequency depends on the 
router parameters. The strongest dependency is on the number of VCs. The reason is 
that the number of VCs directly influences the length of the router critical paths. The 
critical paths are the paths of the SREQ signals (see Figure 4.10), which propagate from 
an input controller to the cross point, then over the column request lines to the RRA. 
The arbiter returns back the signal vc_sel to the cross point where it is switched over the 
row acknowledge line and returned to the input controller as the SACK signal. All this 
path is propagated in a single cycle and its propagation delay determines the router 
maximal clock frequency. Since the number of VCs determines the number of cross 
points in the crossbar columns, it determines the length of the column request lines and 
their propagation delay. The line’s propagation delay, which is dependent on the 
number of OR elements in the chains, increases linearly with the number of VCs. The 
delay of the arbiter also depends linearly on the number of VCs. The delay of the other 
parts of the critical path is not directly dependent on the number of VCs. Therefore we 
expect the delay of the router critical paths to depend linearly on the number of VCs. 
The maximal clock frequency is inversely proportional on this delay.  
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The delay of the critical paths and its dependency on the number of VCs can be 
reduced by replacing the OR-chains with cascaded ORs. The cascaded OR is faster than 
an OR-chain, but it uses more OR elements. Since we focus on the router area reduction 
we experimented with OR-chains.  

The buffer size and the channel width do not directly influence the length and the 
delay of the router critical paths. For that reason they do not affect the maximal clock 
frequency noticeably.  

 
Finally, we compare the implementation results of our asymmetric router 

architecture design and canonical design of symmetric architecture (see Figure 3.6). The 
two architectures use the same router configuration: B=2, V=4, W=16. For the 
symmetric architecture design the VC allocator, the switch allocator and the crossbar 
switch are implemented as separate blocks.  

Figure 4.16 compares the implementation area and the maximal clock frequency of 
the architectures. The symmetric architecture has a relatively small crossbar area, while 
its arbitration (‘others’) takes more than 50% of the router area. This is because the 
allocators are implemented inefficiently as separate blocks and also because the switch 
allocator for this architecture is more complex. However, the main disadvantage of this 
architecture is that it due to its complex arbitration it cannot provide service guarantees. 

The asymmetric architecture design we proposed in this chapter, in spite of its 
larger crossbar, reduces the overall router area compared to the symmetric architecture. 
The crossbar size increases, but the arbitration area is decreased considerably. And what 
is more important, this architecture can provide guaranteed services. Although the clock 
frequency of the asymmetric architecture is slightly smaller, speed of both architectures 
is comparable.  
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Figure 4.16: Area and performance comparison between symmetric and asymmetric 
architecture of virtual channel router 
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Table 4.1 compares the implementation results of our router with the results of the 
other NoCs providing GS and BE services. For similar design parameters the area of our 
router is comparable with the area of the other networks. It is slightly smaller but also 
slower than the other packet switching networks. The circuit switching solution of 
Wolkotte is much smaller and faster than all the packet switching solutions, but it alone 
is not able to provide BE services.  

Table 4.1: Router implementation results of the NoCs providing GS and BE services 

NoC Flow control
Area 

[mm2]

F 

[MHz]

Tech. 

[mm]
Configuration

Wolkotte
Circuit switching, 

cut-through (serial)
0.05 1000 0.13

4-bit channel

4 channels per port, 

BE network not 

included

Ǽ thereal 

Distib.
TDM, Wormhole 0.24 500 0.13

Ǽ thereal 

Centr.
TDM, Wormhole 0.17 500 0.13

Ǽ thereal 

GS only
TDM 0.03 1000 0.13

MANGO Virtual channels 0.19 515* 0.12

32-bit channel, 

2x48 VCs per port,

2-flit  buffers,

1-word flits

VCNoC Virtual channels 0.15 350 0.13

32-bit channel,

4 VCs per port,

2-flit  buffers,

1-word flit

32-bit  channel,

1-flit  GS and 8-flit  

BE buffers per port, 

3-word flits

 

4.4. Conclusion 

In this chapter we discuss the design and implementation of the asymmetric virtual 
channel router architecture we employ in our network. Since it is considered to be too 
extravagant in implementation area, the asymmetric architecture is usually disregarded 
and the traditional symmetric architecture is preferred. However, here we show that for 
routers of such small scale as the network-on-chip (NoC) routers, an appropriate 
implementation can make the asymmetric architecture competitive in area and 
performance with the symmetric one. Moreover, it is competitive with the other NoC 
router solutions reviewed in Chapter 2. The reason why we insist in using the 
asymmetric architecture is that, in contrast to the symmetric one, it is able to provide 
predictable performance.  

We propose an optimised design for an asymmetric architecture which avoids 
repeated functionality, complex interfaces and makes the implementation more uniform. 
All this helps in reducing the overall router area and making it smaller than that of a 
symmetric router architecture.  

The analysis of the implementation results confirms the observation made for other 
NoC designs that in terms of area buffers are the most expensive router component. The 
router maximal operating frequency is sensitive only to the number of VCs. For that 
reason and because of the area constraints, the number of VCs in a router should be 
minimised. What is the required minimum number of VCs from a functional point of 
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view is discussed in the next chapter. Among the router parameters, the network 
channel width is the most effective way for increasing the router throughput.  
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Chapter 5  
 
Evaluation of the virtual channel reservation 
approach* 

Virtual channel reservation is a simple approach for 

providing guaranteed throughput services in a virtual 

channel network-on-chip. However, its performance is 

limited by the number of virtual channels per physical 

channel. In this chapter we explore the limits of the 

approach and investigate how these limits depend on the 

routing algorithm, traffic locality, network topology and 

network size. We also estimate the implementation 

overhead of virtual channel reservation. 

5.1. Introduction  

In Chapter 3 we propose virtual channel reservation as an approach for providing 
guaranteed services (GS) in our virtual channel NoC. To provide guaranteed services 
we reserve a path of VCs from source to destination and the data sent over this path can 
rely on a guaranteed throughput. Such paths we call GS connections and they are 
reserved at run-time when the application that uses them is started.  

The GS connections stay reserved for the lifetime of the application, which for our 
target applications (streaming DSP applications) can be from seconds to hours. During 
that time the reserved VCs cannot be used for other communications. Since there is a 
limited number of VCs per physical channel, only a limited number of GS connections 
can be reserved simultaneously, respectively provided to applications. Therefore, to 
apply virtual channel reservation we must be sure that the network can meet the system 
demands for GS connections.  

In this chapter we investigate under what conditions the virtual channel reservation 
can satisfy the demand for GS connections in our system. We assume a fixed number of 
virtual channels. As we saw in Chapter 4, the router area and performance are sensitive 
to the number of VCs, which does not give us much freedom to vary with the number of 
VCs. Given a fixed number of VCs per physical channel, there are a number of factors 
determining the maximal number of connections that can be open simultaneously and 
these are: required bandwidth, traffic locality, connection routing, network topology and 
network size. For different combinations of these factors we test whether or not the 
requested connections can be provided. The test is done by means of simulations in 
which a routing function tries to find and reserve paths for the approximated maximal 

                                                           
* Major parts of this chapter have been presented at the International Worksop on Applied and Reconfigurable 
Computing [7]. 
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number of GS connections. Our goal is to identify the cases for which the proposed 
NoC can satisfy the system demands and the virtual channel reservation can be applied 
safely.  

Applying the virtual channel reservation requires support at system level. In this 
chapter we also estimate what is the system overhead for this support, in order to show 
that the VC reservation can be used at run-time.  

5.2. Network and GS services 

Our network is constructed by interconnecting a two-dimensional array of PEs in a 
grid; each PE is equipped with a router as the neighbouring routers are connected by 
two physical channels, one in each direction. All physical channels have the same 
bandwidth. The network is a virtual channel network [21], which means that each 
physical channel is shared between K virtual channels (VCs). The VCs dynamically 
share the bandwidth of the physical channel. The VCs currently transporting data 
receive equal shares of the physical channel bandwidth, while the idle VCs do not 
receive bandwidth.  

To provide GS we use virtual channel reservation – an approach which is 
introduced in Chapter 3 and which we briefly repeat here. Let the network be defined as 
a graph I=(N,C), where the vertices represent the network nodes and the edges represent 
the physical channels. All physical channels have bandwidth b.  

Assume that on a physical channel ci, there are ki VCs transporting data, while the 
remaining K-ki VCs are idle. Then, because of the bandwidth sharing each of the ki VCs 
is guaranteed throughput of: 

(5.1) 

i

i
k

b
TH =  

Thus, if we know the number of occupied VCs, we can predict what the minimal 
throughput of a VC will be. Furthermore, if we can control the number of occupied 
VCs, we can guarantee a minimal VC throughput. The virtual channel reservation 
exploits this network feature. By controlling how the VCs in the network are used we 
provide guaranteed network services.  

With the virtual channel reservation approach guaranteed services are provided on a 
connection basis. The network provides connections with guaranteed minimal 
throughput (GS connections). A GS connection is just a path reserved over the VCs 
from source to destination. Such a connection can guarantee a requested throughput THR 
if all the VCs on its path guarantee a throughput that is greater than or equal to THR. 
According to (5.1) this means that for all physical channels <c1, c2, … cH> traversed by 
the connection it must be provided that: 

(5.2) R

R

i k
TH

b
k =








≤  

This is a necessary and sufficient condition for a GS connection to provide a minimal 
throughput THR (for more details see Chapter 3). 

The virtual channel reservation approach requires support at system level – a central 
routing function that reserves the VCs and provides connections. The function runs as a 
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system routine on a central general purpose processor. The routing function is called 
every time a new connection is required and the function output is used for network 
reconfiguration. To find a path with a given throughput THR the routing function 
searches the network for VCs that satisfy (5.2). 

Connections are requested and provided at run-time when a new application is 
started. When an application is started by a central system authority, the routing 
function is called to find paths for all GS connections required by the application. Since 
the routing function is used at run-time, it must be fast.  

 
The number of GS connections that can be open simultaneously in the network is 

limited. The main constraint of course is the number of virtual channels, but there are 
number of other factors influencing the limit:  

- routing function – the routing function allocates the VCs to the connections, 
thus it distributes resources to the connections. The way the allocation is done 
may influence the maximum number of connections that can be opened 
simultaneously.  

- traffic locality – the traffic locality determines the average distance between 
source and destination; therefore, it determines the average number of VCs 
per connection, which in turn influences the maximum number of 
connections.  

- network topology – the network topology determines the number of physical 
channels in the network. Hence the topology also influences the limit. 

- network size – the number of nodes in the network determines the number of 
physical channels for a given topology and so it may also influence the limit.  

The factors listed above define a five-dimensional design space which we explore 
by judiciously selecting points in each dimension. All the dimensions except the traffic 
locality and network topology are independent of each other.  

Traffic locality 

Locality is a traffic characteristic, which is a result of the application mapping. The 
mapping places the application graphs over the network graph. Thus, traffic locality 
depends on the mapping algorithm, the topology of the applications graphs and the 
network graph topology. To provide traffic patterns with different locality 
characteristics we simulate the operation of a mapping function. We use different 
mapping scenarios to map a fixed topology application graphs on fixed topology 
network graphs. In that way we create what we call a spatial model of the GS traffic, 
discussed in Section 5.4. 

Number of VCs 

We do not experiment with the number of VCs but fix it to a constant value. 
Although more VCs allow more connections to be opened simultaneously, the number 
of VCs cannot be increased arbitrarily because this increases the router area and lowers 
router clock frequency (see Chapter 4). We fix the number of VCs per physical channel 
to 4 (K=4). For this number the router area is less than 0.1 mm2 (for 16-bit channels and 
2-flit buffers) and the minimal throughput per VC is 1400 MBit/s, which is enough to 
support high throughput communications like HiperLAN/2 (512 Mbit/s). Increasing the 
number of VCs to 8 doubles the area and reduces the minimal VC throughput to 800 
Mbit/s, which might be a tight bound for high throughput applications. The number 4 is 
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also motivated by the result of a study about the trade-off between performance and 
buffer area of a virtual channel router, presented by Dally [21]. According to (5.1), with 
K=4 a VC can guarantee throughput of b, b/2, b/3 and b/4. 

Routing function  

To test whether the NoC can satisfy the system demand for connections, we have to 
test whether the routing function can provide paths for the maximal number of 
requested connections. We do this by means of simulation experiments. We simulate 
only the operation of the routing function and not the network itself. The routing 
function takes as an input two nodes, a source-destination pair, between which a 
connection is needed and returns as a result a path for the connection. The network is 
represented by its topological graph and the routing function is run to find paths in the 
graph for a number of connections that approximates the maximal number of 
connections demanded by the system. The number of connections and their distribution 
in the system are provided by a spatial model of the GS traffic in the system. 

To see how the routing function performs in different conditions, simulation 
experiments are performed for different combinations of factors listed above. Given a 
fixed number of VCs, we experiment with the other factors influencing the maximum 
number of connections. We experiment with two routing algorithms – one that does 
load balancing trying to uniformly distribute traffic in the network and another that does 
not do load balancing. Experiments are made for traffic with different locality. We 
construct traffic models that approximate worst case locality, best case locality and 
intermediate case locality.  

Topology  

The experiments are conducted for the most popular grid topologies shown in 
Figure 5.1 – mesh and torus (see Chapter 2). Later we also make energy cost 
estimations where the length of the network channels is important. For that reason we 
include also the folded torus topology. The folded torus has the same graph topology as 
torus, but its nodes are reshuffled in the plane and the network channels have different 
physical length.  

Mesh Torus Folded-Torus  

Figure 5.1: Network topologies used in the experiments 

Network size 

To take into account the effect of the network size, experiments are performed with 
networks of two sizes – 10-by-10 nodes and 16-by-16 nodes. Considering the available 
chip area and the size of the processing elements, these are system sizes feasible in the 
today and near future semiconductor technologies. 
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We continue with a more detailed introduction of the routing function and an 
estimation of the overhead it entails. Later we describe the traffic model we use to 
simulate the routing function. Finally, we describe the simulation experiments and 
present the results. 

5.3. Routing function 

The task of the routing function is to find paths for GS connections. A GS 
connection is described by its source node S, destination node D and requested 
throughput THR. The routing function has the form R(S,D,THR). It takes as an input a 
connection description and returns a description of a network path from S to D, or fails 
if the connection cannot be provided. The returned path guarantees a throughput of at 
least THR. The path is described as an ordered sequence <vc1, vc2, …, vcn> of virtual 
channels vci reserved for the connection.  

5.3.1. Operation 

When searching for a path that can provide a specified throughput THR, the routing 
function may use only physical channels that satisfy (5.2) or in other words, physical 
channels where the number of occupied VCs is less than or equal to kR. When the 
routing function decides to route a path over a given physical channel ci, it reserves one 
of the free VCs on that physical channel. This changes the throughput of the other 
occupied VCs, if any, on the same physical channel. Therefore, searching for a path, the 
routing function must be aware that it does not violate the guarantees given to the paths 
already routed. The routing function must use only channels satisfying the following 
two GS routing criteria: if the path is routed through the physical channel, then i) (5.2) 
will hold for the path currently being routed and ii) (5.2) will still hold for the paths 
already routed through the same physical channel. Here we discuss only the basic 
functionality of the routing function. More advanced options like changing of existing 
paths are considered as future work.  

To apply the GS routing criteria, the routing function must know the state of the 
VCs on every physical channel. The VC state indicates whether a VC is occupied, and if 
so, what throughput it guarantees, or what the kR of the path used is. The constraint kR 
may take integer values between 1 and K.  

The state of the VC j on a channel ci is stored in a state variable rij that may take 
values 0, 1, … K. Value 0 indicates that the VC is not occupied, while for the occupied 
VCs rij stores their constraint kR: 

(5.3) 






=
occupiedisvcifk

occupiednotisvcif
r

ijR

ij

ij

0
 

The state variables of all VCs in the network construct the network state. Thus the 
routing function is of type: 

 pathstateTHDSstateR R ×→×××:  

Given the network state, we can find the number ki of occupied VCs on a given physical 

channel ci by counting the number of VCs on ci which state rij≠0, 0 ≤ j ≤ K-1. The 
routing function needs to know ki when deciding whether it can route through a given 
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physical channel ci. The routing function checks whether ki satisfies the routing criteria. 
The first criterion is to guarantee the throughput of the connections being routed, which 
is: 

(5.4) Ri kk ≤+1  

The second criterion is to guarantee the throughput of the connections already routed 
through the same physical channel, which is:  

(5.5) 10,0|1 −≤≤≠≤+ Kjrrk ijiji  

When a physical channel satisfies these criteria, the routing function may use any free 
VC on it.  

The routing function searches the network state for VCs that satisfy the routing 
criteria and uses these channels to construct a path between the source S and destination 
D. When the path is found, the routing function sets the state of all VCs used in the path 
to kR (rij:=kR). In this way it reserves the VCs, since they are not considered in following 
path searches. When the path is not needed any more (e.g. the application using it 
terminates) the state of the used VCs are freed and their state is set to “free” (rij:=0).  

In this chapter we discuss only routing of GS traffic. However, in the real system 
both types of traffic, BE and GS traffic, are handled. This requires a small modification 
of the network state and the routing function. The network state needs one extra bit per 
VC to identify whether the VC is used to carry BE or GS traffic. When a VC is used for 
BE traffic, its state shows the number of BE paths that share the VC. The routing 
function increments or decrements the VC state value when routing or deleting a path 
through the VC. When routing BE traffic, the function must avoid deadlock. As 
discussed in Chapter 2, the most inexpensive way for that is to apply the Turn Model, 
which restricts the turns the paths can make.  

Finding a route in a network is equivalent to finding a path between two nodes in a 
graph. The network topology is represented as a graph I=(N,C) and a path searching 
algorithm is run on that graph. Among all possible paths the shortest is preferable, 
because shorter network routes result in less network traffic and less energy for 
communication. Therefore, the routing function is based on an algorithm for the shortest 
path search in graphs. Actually, the algorithm runs on a sub-graph I’=(N,C’) which is 
derived by removing all channels in I that do not satisfy the GS routing criteria. In the 
course of operation the routing algorithm thus ignores the channels in I that do not 
satisfy the GS routing criteria. 

5.3.2. Algorithms  

We experiment with two shortest path search algorithms: Breadth-first search 
(BFS) and Dijkstra’s algorithm (DA) [20]. Breadth-first search is a basic shortest path 
search algorithm that works on non-weighted graphs. It is also used as routing algorithm 
in the IBM SP2 system [74]. We use BFS to implement a simple routing function that 
does not do load balancing. The algorithm finds shortest paths in terms of the number of 
edges. Thus, the routing function based on BFS finds paths that are minimal in terms of 
physical distance. However it does not take into account the current state of the network 
– physical channels with or without load are treated equally as long as they satisfy the 
GS routing criteria. The computational complexity of the algorithm is linear in the 
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number of network nodes O(N). The memory complexity of the algorithm is also linear 
in the number of network nodes. 

Dijkstra’s algorithm is a more advanced shortest path search algorithm that works 
on weighted, directed graphs with non-negative weights. We use it to implement a more 
sophisticated routing function that tries to balance the traffic by distributing the 
communication over the network. The algorithm finds shortest paths in terms of a 
minimal weighted sum. In our network, the weight we assign to an edge is one plus the 
number of occupied VCs on the corresponding physical channel; thus the weight of 
channel ci is (1+ki). In the sum, one stands for a unit of physical distance and ki is the 
weight representing the number of occupied VCs. Thus, searching for a minimal weight 
path, DA prefers to use physical channels with fewer VCs occupied, so we may expect 
that DA will distribute communications in the network more uniformly than BFS.  

The graph weights change dynamically. Every time a connection is routed the state 
of the reserved VCs is changed, which increases the weights of the physical channels 
traversed by the connection. Reversely, when the connection is deleted, the VCs are 
released and the weights are reduced. Hence, the weights reflect the current network 
state and the routing algorithm adapts its decision to this state.  

A naive implementation of Dijkstra’s algorithm leads to a computational 
complexity of O(N2), but with an optimised version O(C log2N) can be achieved [20]. 
The memory complexity of the algorithm is linear in the number of nodes. 

 
Here we experiment only with BFS and DA algorithms to find out whether the load 

balancing improves the performance of the routing function. However, the A* (A star) 
algorithm [37] can be used to reduce the run time of the routing function. The A* 
algorithm performs a directed search in a graph. Since our network topology is known 
in advance, we can use this knowledge to direct the algorithm in its search for a shortest 
path. Thus, we can reduce the number of explored nodes and respectively to reduce the 
average time for finding a connection. We include the A* algorithm in our future work.  

5.3.3. Overhead 

To measure the time overhead due to the routing, we measure the worst case 
execution time of the routing function on an ARM processor – a general purpose 
processor popular for a low-power SoC. The worst case execution time of the routing 
function gives the maximal time for routing a connection. We implement in C two 
routing functions, one based on BFS and one based on DA, and run them on an ARM7 
simulator to measure their worst case execution time. For DA we use the naïve 
implementation of complexity O(N2) because our intention here is to get an indication 
about the magnitude of the execution times. Since in the simulations presented in 
Section 5.6 DA does not prove to be beneficial to the performance of the routing 
function, we do not make further efforts to optimise DA. 

While, searching for a path, both algorithms progressively explore network nodes 
until the destination node is reached. The number of explored nodes determines the 
number of iterations the algorithm makes. Thus, to create a worst case execution 
condition, we force iteration over all the nodes. Since a mesh and a torus topology have 
the same number of nodes, the topology does not influence the worst case execution 
time. We measure the time assuming a mesh topology. Each algorithm is run once to 
explore all network nodes and its execution time is recorded. To see how the overhead 
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scales with the network size, measurements are taken for two network sizes – 10-by-10 
and 16-by-16.  

The results are presented in Table 5.1. Even at a modest clock frequency of 100 
MHz, BFS can provide a connection in less than a 1 ms for both network sizes. 
Typically our applications require 5 to 10 connections [67, 87]. Hence, providing all 
connections will take several milliseconds. Therefore, when an application is started, the 
time overhead due to the routing is of an order of milliseconds, which is tolerable given 
that the lifetime of GS connections ranges from seconds to hours.  

With DA the maximal time for providing a connection increase to 1.7 ms and 10 ms 
for the two network sizes. Then, the time overhead for starting an application can be 
tenths to hundred milliseconds. This is also tolerable but it is almost perceptible to the 
user. Increasing the clock frequency to several hundreds of MHz will reduce the DA 
overhead, but will not improve its scalability with the number of nodes. The scalability 
of DA is poor because of the high complexity of the used algorithm, O(N2). The poor 
scalability will be a problem when the system size grows. Therefore, if the routing 
function is based on DA, a more optimised implementation of the algorithm with 
complexity lower than O(N2) must be used.  

Table 5.1: Time overhead for routing a single connection in a network with 4VCs per 
physical channel; WCET = Worst Case Execution Time 

BFS DA

10x10 28720 172055

16x16 74355 1020995
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Figure 5.2: Scalability of the routing function execution time with the network size 

To see how the time overhead for routing a connection scales with the number of 
VCs, we measure the worst case execution time of the routing functions for 4 and 8 VCs 
per physical channel in a network of fixed size 10-by-10 nodes. The results are 
presented in Table 5.2 and Figure 5.3.  

The number of VCs influences the execution time of the algorithms only through 
the GS routing criteria used as a channel selection rule. When the algorithm explores a 
node, it applies the channel selection rule to the physical channels of the node. Applying 
the rule to a physical channel means examination of the state of all VCs on that physical 
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channel. Hence, by increasing the number of VCs we linearly increase the time for 
applying the rule and respectively the time for exploring a node. Since the algorithm 
iterates over the network nodes, when increasing the number of VCs we linearly 
increase the time for a single iteration and the algorithm execution time. Here we 
examine the worst case execution time and both algorithms iterate over all network 
nodes (100 nodes for a 10-by-10 network). Hence, both algorithms perform the same 
number of iterations and we expect that a change in the number of VCs will have the 
same impact on the execution time of both algorithms. 

The results in Table 5.2 and Figure 5.3 confirm our expectation. The increase in the 
number of VCs from 4 to 8 leads to a similar increase of the execution time for both 

algorithms. This increase is about 1.1 µs (110 cycles) per iteration or about 0.1 ms in 
total. Because this value is small compared to the total execution time, and because a 
large number of VCs is not possible due to their high area cost and negative impact on 
the performance, we do not consider the number of VC a serious time overhead related 
issue. 

Table 5.2: Time overhead for routing a single connection in a 10×10 network; WCET = 
Worst Case Execution Time 

BFS DA

4 28720 172055

8 39724 183801
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Figure 5.3: Scalability of the routing function execution time with the number of VCs 

The memory overhead for supporting the routing function is presented in Table 5.3. 
The function implementation requires memory for storing the function code, function 
variables and memory for storing the network state. It shows that both algorithms have 
similar memory requirements. Most of the required memory is for storing the network 
state. The network state is the same for both algorithms and consists of the state of all 
VCs in the network. Assume w bits are needed to store the state of a VC. Then, per 
physical channel Kw bits are required.  

The size of the network state for the two network topologies is calculated in the 
following way. In a torus network every node is connected to five channels – four to 
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neighbouring routers and one to the local PE. Therefore, to store the state of a N-node 

torus network 5NKw bits of memory are needed. In a mesh network of size n×n=N 
nodes, there are (n-2)2 nodes connected to 5 channels, 4(n-2) nodes connected to 4 
channels and 4 nodes on the corners connected to 3 channels (always including the 
channel to the local PE). Thus, to store the state of a mesh network [5(n-2)2+4*4(n-
2)+4*3]Kw bits are needed. The network state memory presented in Table 5.3 is for a 
network with 4 VCs per physical channel (K=4) and a state of one byte per VC (w=8). 
Given four VC per physical channel, the VC state variable can take 5 values – from 0 to 
4 (see Section 5.3.1). Thus, three bits are enough to store a VC state and the total 
network state given in Table 5.3 can be compressed. However, this will complicate the 
access to the state variables.  

The memory required for the support of a routing function can reach several 
KBytes, which may exceed the size of the local memory of a PE. However, the routing 
function runs on a central general purpose processor, which besides routing performs 
other system function. To support the system, this processor cannot rely only on a local 
memory but is connected to a larger external memory of size of hundreds of MBytes 
[94]. This is where the network state is stored. Compared to that memory size, the 
memory overhead due to the routing is acceptable. The external memory is slower than 
the internal one, but the ARM system we consider here runs at 100 MHz which is also 
slow and due to caches the access time of the external memory is not a bottleneck.  

Table 5.3: Routing function memory overhead 

BFS DA

Code size [byte] - 512 484

10x10 400 300

16x16 1024 768

10x10 1840 1840

16x16 4864 4864

10x10 2000 2000

16x16 5120 5120

Algorithm variables [byte]

Network state* [byte]  

for mesh topology

Memory overhead

*-Assuming  4 VCs per physical channel

AlgorithmNetwork 

size

Network state* [byte] 

for torus topology

 

 
We investigate two options for implementing the routing function – BFS and DA. 

While both algorithms have similar memory complexity, DA has a higher 
computational complexity than BFS. To decide which algorithm is preferable, we have 
to know also how the algorithms perform, in terms of maximal number of provided 
connections. To find out that, we simulate the operation of the routing function with a 
traffic model that estimates the maximal number of requested connections.  

5.4. Spatial model of the GS traffic 

The performance of the routing function is tested against a model of the GS traffic 
in our system. The model reflects the special aspects of the streaming traffic in the 
system – it approximates the maximal number of GS connections requested by the 
system and the traffic pattern these connections follow. Furthermore, the model allows 
for experiments with different degrees of traffic locality. 

The GS traffic in our system is generated by streaming applications. Streaming 
applications typically have a simple pipeline structure represented by a pipeline graph. 
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At a certain moment in time a number of streaming applications are running 
simultaneously in the system. Hence, there are number of pipeline graphs scattered over 
the PEs. The edges of the pipeline graphs represent the required GS connections. To 
model such traffic we use a graph with a ring topology whose nodes are scattered over 
the PEs. A large ring graph can be considered as many short pipeline graphs connected 
serially. Scattering the nodes of the ring graph over the PEs, scatters the short pipeline 
graphs in the same way we expect to find in the real system. The only difference is that 
in a real situation some of the applications may communicate with peripheral devices 
instead of with other applications. However, most likely these peripheral devices will be 
placed at the border of the PE array where they are connected to the on-chip network. 
Therefore, the ring graph nodes assigned to border PEs can be considered as peripheral 
devices which are sources and sinks of data.  

To approximate the maximal number of GS connections demanded by the system, 
we assume that the number of vertices in the ring graph is equal to the number of PEs in 
the system. Every graph vertex then is mapped on a separate PE, which means that 
every PE in the model generates and consumes a stream. Hence, the model assumes 
single task processors in the system, which is the case for the majority of the PEs in our 
system. The traffic model produces as an output a list with the connections in the 
mapped ring graph. The connections are described by their source and destination PE. 
The list consists of N connections, one connection per PE. During the simulations, the 
traffic model produces such lists and for each list the routing function is called to find 
paths for all the connections.  

The actual PEs where an application will run is determined by the spatial mapping 
[72]. The positions of these PEs determine the communication distances between the 
application tasks. Thus, the spatial mapping has a strong influence on the 
communication locality. We use the spatial mapping to enforce specific locality 
characteristics in the traffic patterns generated by our traffic model. The traffic model is 
constructed by mapping of the ring graph on the array of PEs. To model the traffic 
locality we use three different strategies for mapping the ring graph. The three strategies 
produce mappings that approximate respectively the best, the worst and an intermediate 
case of traffic locality.  

The three mapping strategies use the same algorithm for choosing the PEs, but 
differ in a locality parameter given to the algorithm. The algorithm operates on the ring 
graph in the following way. The graph vertices are mapped sequentially in the order 
they appear in the graph. For every next vertex, a PE is chosen randomly among those 
PEs which are at a distance less than or equal to d hops from the PE where the previous 
graph vertex is mapped. Here d is a parameter of the algorithm that sets a diameter for 
the preferred network distance. If there is no free PE within that distance, then a PE is 
chosen randomly among all free PEs. In this way the majority of the communicating 
PEs are close to each other, but still there are some long distance communications in the 
system. We expect that to be near to the real conditions in the system because not 
always the particular circumstances will allow communicating tasks to be mapped close 
to each other, e.g., inter-application communications, dependencies on the PE type or 
hot-spot areas in the system  

The three mapping strategies differ only in the value of the parameter d. The first 
strategy tries to maximize the traffic locality; it sets the parameter d to 1 and 
approximates best case locality. The second strategy approximates worst case locality. It 
sets the parameter d to the diameter of the network (the longest network distance, which 
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in a 10-by-10 network is 18 hops). Therefore, the worst case mapping strategy 
uniformly scatters the graph nodes over the PEs and no locality should be expected.  

The third strategy sets d to an intermediate value 4, so we call this the intermediate 
case of locality. The intermediate locality models the situation expected in a real system 
where the mapping procedure tries to reach maximal locality but does not always 
succeed, because the nearby PEs might be occupied by already running applications or 
be of the wrong type. The distance range from 1 to 4 is where we expect the average 
communication distance to fall in a system that makes optimisation efforts towards 
improving its traffic locality. That is because the applications we consider usually 
consist of 5-10 nodes, so they can form clusters of 5-10 occupied PEs. Within a range of 
4 hops, up to 40 other nodes can be reached, which is more than enough to jump across 
clusters to find a free node around. So we can infer that communication distances of 
four and more hops will not be observed so often. 

The traffic model we construct by scattering the vertices of the ring graph is a 
subset of the class of permutation traffic, well known in the domain of interconnection 
networks [27]. In permutation traffic patterns, each source s sends all its data to a single 

destination d chosen by a permutation of the nodes, d=π(s). The difference with our 
model is that we force specific locality characteristics in the generated traffic patterns. 

By using the three mapping strategies, our traffic model can produce traffic patterns 
with different locality characteristics – best, worst and intermediate locality. The traffic 
patterns are randomised, but with specific locality characteristics depending on the used 
mapping strategy. The mapping strategy influences only the average distance of the 
connections generated by the traffic model. 

The distribution of the distances of the connections generated by our traffic model 
for the three different cases of locality is presented in Figure 5.4 to Figure 5.7. The four 
figures present results for mesh and torus topologies and for network sizes of 10-by-10 
and 16-by16 nodes. Figure 5.4 presents the distance distribution for a mesh topology of 
size 10-by-10. The three graphs correspond to the three locality cases. Although no 
locality is expected in the case of worst locality, the distances are not uniformly 
distributed but follow the distance distribution in the mesh topology [64]. The locality 
preserving mapping strategies (the intermediate and best case locality) give preference 
to distances smaller than or equal to d, so these distances appear with higher probability 
than the others. For example, for intermediate traffic locality, 97% of the 
communications are at a distance less than or equal to 4 and only 3% at a distance 
greater than 4. 

Since the distribution of distances between the vertices in a torus and mesh graphs 
differ, changing the topology from mesh to torus changes the shape of the distance 
distribution. The change is most clearly seen for worst case locality traffic. Increasing 
the network size changes the network diameter and the mean of the distance 
distributions, but does not change their shape.  

The result of the mapping shows that even with the simple mapping strategy we use 
a high degree of locality can be achieved. In the left graph of the figures where we aim 
at the highest possible locality, the mapping algorithm manages to map on nearest 
neighbour PEs 88% of the graph nodes. This is because of the simple application 
structure we assume. Hence, the simple pipeline structure of streaming applications 
simplifies the application mapping. 
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Figure 5.4: Distance distribution in a 10-by10 mesh network and ring communication 
pattern  
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Figure 5.5: Distance distribution in a 10-by10 torus network and ring communication 
pattern 
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Figure 5.6: Distance distribution in a 16-by16 mesh network and ring communication 
pattern 
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Figure 5.7: Distance distribution in a 16-by16 torus network and ring communication 
pattern 

5.5. Simulation experiments 

We perform simulation experiments to test how different factors influence the 
routing function performance and respectively the applicability of the virtual channel 
reservation. A simulation experiment consists of two steps. In the first step the traffic 
model generates a set of N connections and in the second step the routing function is 
called to find a path for each connection. The output of the simulation experiment is a 
set of the paths found by the routing function. First of all, we are interested whether the 
routing function can find paths for all N connections. In case all the paths are found, the 
experiment is considered successful. We also collect information about the actual length 
of the paths found. All N connections are GS connections and request the same 
throughput THR. In this way we test the limit for maximal requested throughput. Since 
the network supports four VCs per physical channel, THR may take values b/4, b/3, b/2 
or b. 

Experiments are conducted for all combinations of factors influencing the 
performance of the routing function: 

- routing algorithm – we experiment with the two routing functions based 
respectively on Breadth-first search (BFS) algorithm and Dijkstra’s algorithm 
(DA), discussed in Section 5.3  

- traffic locality – we experiment with traffic patterns with different locality 
characteristics: worst, intermediate and best, discussed in Section 5.4 

- network topology – we use mesh and torus, two network topologies most 
popular for on-chip and multiprocessor networks 

- network size – we experiment with two network sizes 10-by-10 and 16-by-16 
nodes or 100 and 256 nodes. 

 
To asses the performance of the routing function for average traffic conditions, we 

perform 1000 experiments for each combination of factors. In each experiment changes 
only the traffic pattern according to which the connections are distributed. The patterns 
are randomised, but with similar locality characteristics. Each experiment sets a sample 
in the space of the possible traffic patterns. We count the number of the successful 
samples. The path length results collected for the successful samples are averaged. The 
number 1000 was chosen empirically as the smallest value, for which a further increase 
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does not change the results noticeably. The results of the performed simulation 
experiments are presented and discussed in the following section. 

5.6. Simulation results 

In this section we present and discuss the results of the conducted simulation 
experiments. We compare how the different factors influence the performance of the 
routing function in order to decide which of them are of importance and can be used for 
improvement and which can be neglected.  

5.6.1. Number of successful samples 

Figure 5.8 shows how many of the 1000 samples taken for each combination of 
factors in a 10-by-10 network are successful. In other words, it shows in how many of 
the 1000 experiments the routing function succeeds to route all the connections. The 
three graphs correspond to the three cases of traffic locality, each graph presenting the 
results for mesh and torus topology. Of interest to us are the cases in which all 1000 
samples are successful because in these cases the network can satisfy the system 
demands for GS connections; therefore, the virtual channel reservation approach can be 
safely applied. The best result would be to have in all the cases all 1000 samples are 
successful. However, because of the limited number of VCs, in some of the cases this 
cannot be achieved. In the cases when not all samples are successful, the routing 
function cannot always provide all requested GS connections and the virtual channel 
reservation approach will limit the system operation.  

In Figure 5.8 we see that for worst case traffic locality the virtual channel 
reservation approach can be safely applied if the requested throughput THR is restricted 
to b/4 for mesh topology and up to b/3 for torus topology. The torus topology helps to 
improve the performance in such traffic conditions by increasing the throughput limit 
from b/4 to b/3. This is because the torus has smaller diameter, which shortens the 
average length of GS connections. Introducing traffic locality improves the performance 
of the virtual channel reservation approach by increasing the limits on the THR to b/2 for 
intermediate locality and b for best locality. The reason is that traffic locality restricts 
the length of the GS connections, so fewer VCs are reserved per connection. The VCs 
that are left free may be used either for opening more connections or to increase the 
throughput demand per connection. When the traffic shows locality, the improvement 
achieved by replacing the mesh with the torus topology is not significant, because the 
GS connections are short because of the locality anyway. 
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Figure 5.8: Number of successful samples in a 10-by-10 network 

The two routing algorithms do not change significantly the performance of the 
routing function. The DA and BSF perform almost equally in all cases, although DA 
tries to do load balancing and BFS does not. The most important observation is that in 
all the cases the demand for GS connections is either satisfied or not satisfied, no matter 
which algorithm is used. The reason that both algorithms perform similarly, although 
they put different efforts in routing, is the traffic pattern in the system which is a result 
of the simple application structure. Every node in the network generates and consumes 
one stream. Hence, the sources and sinks of data are uniformly distributed in the 
network and so are the connections. Thus, with this applications structure and this 
system organization, the traffic in the system is almost balanced and it does not make 
much difference whether the routing algorithm performs load balancing or not.  

Among the three factors – locality, topology and routing algorithm – the traffic 
locality is the one with strongest influence on the routing performance, while the 
routing algorithm does not influence the performance significantly.  

The results show also that 4 VCs per physical channel provide enough network 
resources for applying the virtual channel reservation in a 10-by-10 network if the 
throughput requests are restricted to b/4 (in a mesh network) or b/3 (torus network). By 
increasing the traffic locality the throughput restriction can be increased to b/2 or b. 
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By requesting different throughput (b/4, b/3, b/2 or b) we restrict the number of 
VCs, ki, used on a physical channel to 4, 3, 2 or 1 (see (5.2)). Therefore, the results for 
the different throughput requests can be interpreted also as results for a different number 
of number of VCs per physical channel.  
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Figure 5.9: Number of successful samples in a 16-by-16 network 

The number of successful samples in a network of size 16-by-16 is shown in Figure 
5.9. Compared to a 10-by-10 network, the results deteriorate for traffic with no locality, 
while for local traffic the results are similar. The reason is that when the traffic does not 
show locality, the average communication distance increases with the increase of the 
network size. In contrast, for traffic that shows locality the communications are mostly 
local and the communication distances do not depend strongly on the network size. 

The results show that the virtual channel reservation cannot be used in 16-by-16 
network when traffic does not show locality, because the network cannot provide the 
requested GS connections. To apply the approach in a larger network, the number of 
VCs per physical channel can be increased. However, this solution is costly in terms of 
area. The other options are to use a network topology with a higher connectivity, like 
the torus, or to increase the communication locality. The last option is most profitable, 
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because, as we shall see, improving the traffic locality also helps to reduce the 
communication energy cost and generally improves the traffic conditions.  

Again, and for the same reason as before, the routing algorithms do not show 
significant performance differences. 

5.6.2. Detour cost 

The routing function tries to route GS connections using shortest paths, but this is 
not always possible because some VCs along the shortest path might be occupied. In 
such a case the routing function takes a detour – a path which is not minimal. Detour 

cost is defined as the difference between actual path length and the distance between 
source and destination (the minimal path length). The better routing algorithms manage 
to route the traffic using shorter paths and therefore, with less detour cost. 

The detour cost in a 10-by-10 network is shown in Figure 5.10. The presented 
figures give the sum of the detour cost of all 100 connections in the traffic pattern. The 
cases when routing is not possible (see Figure 5.8) and no data is available are marked 
with ‘x’. In most of the cases the sum detour cost is less than ten hops, which is 
negligible compared to the sum distances of the 100 connections (at least 100 hops). 
This means that both algorithms manage to find short paths for most of the connections.  

The detour cost exceeds 10 hops only in the cases when not all GS connections can 
be routed (see Figure 5.8). In these cases the routing function runs into a situation when 
the network resources are almost exhausted and finding a direct path is almost 
impossible. When routing the last few (2-3) connections, the function takes long 
detours. So the contribution to the detour cost shown in the figure comes mainly from 
few connections that are routed last, while the rest of the connections use almost 
minimal paths.  

The detour cost becomes large only in the cases when not all requested connections 
can be routed (see Figure 5.8 and Figure 5.9), in which cases the routing function 
operates near its limits and the VC reservation cannot be effectively used. For the cases 
where the routing function freely routes all the connections, which are the cases where 
the VC reservation is intended to be used, the detour cost is negligible. Therefore, we 
can conclude that in cases of practical importance the detour cost is negligible.  
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Figure 5.10: Detour cost in a 10-by-10 network 

Figure 5.11 presents the detour cost in a 16-by-16 network. For the cases where the 
virtual channel reservation is applicable, the detour cost is again less than 10 hops and 
therefore negligible. 
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Figure 5.11: Detour cost in a 16-by-16 network 

5.6.3. Communication energy cost 

Wolkotte et al. [9] perform gate level power simulations with the VHDL model of 
our virtual channel router. Wolkotte estimates the average energy cost for traversing a 
router and uses this result to construct an energy model of the virtual channel network. 
He also constructs an energy model of his circuit switching network [9]. Here we use 
the same energy models to estimate and compare how the factors routing algorithm, 
traffic locality, network topology and network size influence the average communication 
energy cost for both networks – our virtual channel network and the Wolkotte’s circuit 
switching network.  

The energy models estimate the average energy cost for transporting a bit in the 
network, in [pJ/bit]. Both models have the form: 

(5.6) ( ) ( )
hopwirehopRps NlNEE 12.039.01 +++=  

Here lwire is the length of a physical channel in mm. Nhop is the average network distance 
in number of hops. ER stands for the energy cost for traversing a router. The energy cost 
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ER for the virtual channel router and the circuit switch is derived by gate level power 

simulations for 0.13 µm technology and takes values ER_PS = 0.98 [pJ/bit] and ER_CS = 
0.37 [pJ/bit]. The second term in the model estimates the energy for traversing the wires 
between two routers (the physical channels).  

We use the energy models to estimate the average communication energy cost for 
three topologies – mesh, torus, and folded torus (see Figure 5.1). For the size of a PE we 
assume 1.5x1.5 mm or 2.25 mm2

 – the size of Montium processing tile [40]. The PEs 
are arranged in a two-dimensional array and interconnected using different topologies. 
The different topologies result in different channel length and different average 
communication distance. In a mesh, the length of the physical channels equals the edge 
length of the PE edge, so lwire is 1.5 mm. In a torus topology, the wraparound channels 
cross the entire array of PEs. Thus, in a 10-by-10 network and a 16-by-16 network the 
length of the wraparound channels is respectively 15 mm and 24 mm. In a folded torus, 
the channels in the middle of the network cross two PEs, so they are 3 mm long. To take 
into account that the wraparound channels in a torus have a different length, (5.6) is 
modified to contain two terms that capture the energy contribution of the regular 
channels and the wraparound channels. For a 10-by-10 torus network the modified 
equation is: 

(5.7) 
( ) ( )( )

( ) hop

hophopRps

pN

NpNEE

15*12.039.0

15.1*12.039.01

++

−+++=
 

The network distance Nhop is replaced by the mean communication distance 
calculated from the simulation results. During the experiments we collect information 
about the utilization of the regular channels and the wraparound channels. This 
information is used to calculate the coefficient p in (5.7). The weight p stands for the 
fraction of hops that traverse a wraparound channel. 

Figure 5.12 presents the results for the average communication energy cost in a 10-
by-10 network. The left graph presents the results for the virtual channel network and 
the right graph presents the results for the circuit switching network. The results show 
that by exploiting traffic locality, the average communication energy cost in the system 
can be reduced by 50% to 70% for the different topologies. The reason is that with local 
traffic the average number of traversed channels and routers is smaller, which reduces 
the energy spent for communication.  

In a condition of worst case locality, the torus topology reduces the energy cost 
compared with a mesh topology because the smaller network diameter of the torus 
keeps the average communication distance shorter. When the traffic shows locality and 
therefore shorter communication distances, the smaller torus diameter is not 
advantageous any more. 

Because the length of the physical channels in a folded torus is doubled compared 
to torus, it should be expected that the energy cost also increases. However, the results 
show that changing the network topology from torus to folded torus does not change the 
communication energy cost notably. That is because for traffic without locality, the 
same amount of energy used for traversing the longer channels in the folded torus is 
used for traversing the wraparound channels in the torus. In other words, the average 
aggregated channel length traversed by the messages is equal in both topologies and no 
difference in the energy cost is seen. For local traffic a difference can be seen but it is 
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small, because the communication energy cost is dominated by the energy for traversing 
the routers.  

The routing algorithm influences the communication energy cost by the detour cost 
– higher detour cost entails more energy for communication. However, the detour cost 
is negligibly small (see Section 5.6.2) and the influence of the routing algorithm on the 
communication energy cost is insignificant. 
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Figure 5.12: Average communication energy cost in a 10-by-10 packet switching and 
circuit switching networks  

The right graph in Figure 5.12 presents the energy cost results for a circuit 
switching network of size 10-by-10. The energy cost for the circuit switching network is 
smaller compared to the results for the virtual channel network. That is because the 
circuit switches are simpler than the routers in the virtual channel network and the 
energy cost for their traversal is lower. However, the circuit switches are also less 
flexible (see Chapter 2) 

Figure 5.13 presents the energy cost results for a network of size 16-by-16 nodes. 
The results differ from those for a 10-by-10 network, mainly for worst case traffic 
locality. That difference is due to the dependency of the average communication 
distance on the network size – increasing the network size increases the communication 
distances and respectively, the energy cost. For local traffic this dependency is weak 
and changing the network size does not noticeably change the energy cost. No data for 
the BFS are present for worst locality in mesh because there are no successful samples 
for 16-by-16 network (see Figure 5.9). 
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Figure 5.13: Average communication energy cost in a 16-by-16 packet switching and 
circuit switching networks 

5.6.4. Performance in the presence of BE traffic 

So far we have been discussing the performance of the routing function assuming 
that the system requests only GS. Indeed, the GS traffic accounts for 90% of all the 
traffic in our system, but still there is 10% BE traffic that must also be served by the 
network. The BE traffic has much lower resource requirements than the GS traffic. The 
reason is not only that BE traffic uses a smaller fraction of the total traffic, but also the 
fact that the BE traffic may share VCs. In contrast with the GS traffic where each GS 
connection uses a separate, reserved path over the VCs, the BE traffic may share paths – 
several BE connections may share a single VC for traversing a physical channel. 
Therefore, to support the BE traffic at most one VC per physical channel is allocated for 
BE connections.  

Let us again consider a network with four VCs per physical channel (K=4), but this 
time one VC per physical channel is used for BE traffic and the remaining three VCs 
can be used by GS connections. In such a network the GS connections use physical 
channels where the number of occupied VCs, ki, is 2, 3 or 4. Therefore, the throughput 
guaranteed by a GS connection can be respectively b/2, b/3 or b/4 (see (5.1)). Results 
for the number of successful samples in such a network are presented in Figure 5.14 and 
Figure 5.15. The main conclusion that can be drawn is that when BE traffic is present, 
virtual channel reservation cannot be used in mesh topology without traffic locality. The 
other option is to increase the number of VCs to 5. The influence of the different factors 
on the results is the same as for the results for GS traffic only. 
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Figure 5.14: Number of successful samples in a 10-by-10 network with BE traffic 
present 

b/4 b/3 b/2 b/4 b/3 b/2
0

500

1000

"Worst" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

b/4 b/3 b/2 b/4 b/3 b/2
0

500

1000

"Intermediate" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

b/4 b/3 b/2 b/4 b/3 b/2
0

500

1000

"Best" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

BFS

DA

BFS

DA

BFS

DA

 

Figure 5.15: Number of successful samples in a 16-by-16 network with BE traffic 
present 
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5.7. Conclusion 

In this chapter we evaluate how the performance of the virtual channel reservation 
approach depends on several factors: traffic locality, routing function, network topology 
and network size. For different combinations of these factors we investigate whether 
virtual channel reservation can provide the guaranteed communication services 
demanded by the streaming DSP applications in our system. We also estimate the 
overhead that has to be introduced at system level to support the virtual channel 
reservation. The average communication energy cost in the network is also estimated. 

The results show that virtual channel reservation can be applied in a network with 
four virtual channels per physical channel. However, the performance of the approach 
depends on the traffic locality. Traffic locality weakens the effect of the network 
topology and the network size on the performance, thus making the system more 
scalable. By exploiting traffic locality the average communication energy cost can be 
reduced by 50% to 70%. The results also show that for our applications traffic locality 
is not difficult to achieve in systems of size 10-by10 and 16-by-16 nodes. Using a 
straightforward mapping strategy we manage to achieve average distance of only two 
hops, as 88% of the communications in the system are with neighbouring nodes.  

Comparing the influence of the different factors, the network topology comes at a 
second place. A network topology with a lower diameter and higher connectivity is 
beneficial for the system performance when the system traffic does not show locality. 
However, in a presence of traffic locality the network topology loses its influence. The 
same is true for the network size. Hence, if the system manages to maintain the locality, 
then simpler network topology can be used.  

The routing algorithm has the weakest influence on the routing performance. With 
or without load balancing, the routing function performs in a similar way. Hence, the 
Breadth-first search algorithm is preferred over Dijkstra’s algorithm because of its 
linear complexity.  

The overhead introduced by the routing function is small enough to allow 
application of virtual channel reservation at run-time. A routing function based on the 
Breadth-first search algorithm routs a connection in less than a millisecond. It takes 
only a few milliseconds to provide all the connections requested by an application in 
our target domain.  

We may conclude that the virtual-channel reservation approach is fast and efficient 
enough to be applied for providing service guarantees at run-time. A direction for 
improvement of our work is to investigate the possibilities for run-time traffic 
optimisation, e.g. rerouting connections. Furthermore, the performance of the routing 
function can be improved by employing a more advanced algorithm like A*. 
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Chapter 6  
 
Network integration* 

This chapter discusses the how our network is integrated in 

the system and how predictable system operation is 

achieved. Instead of the traditional fully-static scheduled 

system organisation we use an alternative approach which 

reduces the application scheduling complexity such that 

scheduling can be done at run-time as required in our 

dynamic system. 

6.1. Introduction 

Until now we have discussed our NoC solution separately from the system that it 
serves. We presented how the NoC operates and what communication services it 
provides. In this chapter we move our attention to the operation of the entire system and 
examine how the NoC integrates in it. However, an elaborate discussion of the high 
level system organisation is beyond the scope of this thesis, so our intention is only to 
describe how the system uses the network and to identify the costs incurred by 
employing the NoC. 

Since our multiprocessor system is dynamically reconfigurable, the run-time 
overhead incurred by employing the network must be small enough not to compromise 
the dynamic behaviour of the system. Since the system is intended for real-time 
applications, it must be able to provide the applications with integral performance 
guarantees by providing computation and communication guarantees. Starting a new 
real-time application at run-time is the most time critical system task for a dynamic 
system; the system must perform this task fast and transparently, as at the same time 
performance has to be guaranteed to the application. For that reason, we discuss mostly 
how the system starts new applications and how it guarantees application performance.  

In most network-based SoCs proposed so far, predictable system operation is 
achieved by employing some form of fully-static scheduling. In general, starting an 
application on a statically scheduled systems is an NP-complete problem [69, 73]. Such 
a high-complexity problem is acceptable for these SoCs since they are statically 
configured and their configuration is computed at compile-time. However, since our 
system is dynamic, part of the configuration is computed at run-time [72] and to keep 
the time overhead low the computation must be of low complexity.  

Instead of fully-static scheduling, in our system we use a different approach called 
self-timed scheduling [73]. In combination with the simple structure of our streaming 
application and the guaranteed services provided by the NoC, this system organisation 

                                                           
* Major parts of this chapter have been presented at the EUROMICRO conference on Digital System Design 
[4] and at the Communicating Process Architectures Conference [8]. 
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reduces the computational complexity for scheduling of applications. Starting a real-
time application in our system requires only solving a small system of linear 
inequalities. To the best of our knowledge, our system is the first NoC based SoC to 
employ self-timed scheduling for achieving predictable system performance at low run-
time cost.  

6.2. System operation 

As discussed in Chapter 1, our system consists of an array of heterogeneous 
processing elements (PE). Each PE is connected to the NoC and communicates with 
other PEs only through the network. The system is centralised – there is one PE that acts 
as a central authority and starts application tasks on the other PEs in the system. This 
happens dynamically, at run-time, while some applications are already running in the 
system. Since the system is controlled by the central PE, when we talk about an action 
taken by the system we mean the action taken by the central PE. 

At the system level the NoC is represented by the communication services it 
provides; these are the guaranteed services (GS) and the best effort services (BE) of our 
NoC. As discussed in Chapter 5, the system requests communication services by calling 
a central routing function. For example, the system may call the function to provide a 
GS connection between two PEs for the communication between the tasks running on 
these PEs. (In Chapter 5 we argued that providing such a connection takes less than a 
millisecond.) The routing function runs on the central PE, so requesting a connection 
simply means calling a routine which does not involve network communication. 

6.2.1. Starting an application 

In general, to run an application on a multiprocessor system, four steps have to be 
performed, as indicated in Figure 6.1: partitioning, compiling, mapping and scheduling. 
In the first step, partitioning, the application is partitioned into tasks that will run in 
parallel on separate PEs. In the second step, compiling, the separate tasks are compiled 
for the target PE types. In the third step, mapping, the actual PEs where the tasks will 
run are selected among the available suitable PEs in the system. In the fourth step, 
scheduling, the proper timing behaviour of the application is provided such that its 
performance requirements are met.  

There are two criteria for application partitioning. The first one is grouping into 
separate task parts of the application with computation demands that match the 
capabilities of different specialised PEs. By matching computational demands with PE 
capabilities the system performance and efficiency are improved. The second criterion 
is minimisation of the communication between tasks. Application partitioning is an 
aspect of parallel programming, which is a difficult and widely researched topic that is 
beyond the scope of this thesis. 

During compilation, besides the usual goals of code size and speed optimization, 
the compiler is expected to provide information about the execution time of the 
compiled task (in clock cycles). This information is needed during scheduling for 
predicting the tasks timing behaviour. Compiler technology and execution time analysis 
are also beyond the scope of this thesis.  

When mapping an application efficiently, the optimisation criterion is improving 
the communication locality by mapping communicating tasks on neighbouring PEs. 
Finally, the objective of the application scheduling is to provide such a performance for 
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the application tasks and communications between them that the required overall 
performance is guaranteed.  

Partitioning 
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Run
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Figure 6.1: Steps performed when starting an application 

All the NoC based systems proposed so far are static (statically configured) [34, 
52], which means that the four steps described above are performed at compile time. In 
a static system the system configuration is generated and loaded into the system once, 
before the system start up, and then it is used for the entire operation period of the 
system. Performing all the preparations at compile time is advantageous, as the time and 
resource limitations for computing the configuration is minimal. Hence, in static 
systems the computational complexity of the four steps performed for starting an 
application is not a critical issue.  

In a dynamic system like our, however, applications are started at run-time so not 
all the four preparation steps can be performed at compile time. As shown in Figure 6.1, 
in contrast with static systems, our dynamic system performs mapping and scheduling at 
run-time. Hence, these two steps must be performed fast and efficiently. Since mapping 
and scheduling are performed by the SoC it self, therefore using limited computational 
power and resources compared with the resources available at compile time, the 
mapping and scheduling algorithms must be as simple as possible.  

Fortunately, the structure of our applications simplifies mapping and scheduling in 
our system. As discussed in Chapter 1, the applications in the system have a simple 
pipeline structure. The simple application structure eases the mapping task compared to 
applications with a more irregular structure since the mapping deals with fewer 
dependencies between the tasks, thus with fewer constraints. Hence, we expect mapping 
in our system to be faster and to achieve high locality. The latter was demonstrated in 
Chapter 5 for a homogeneous system (all PEs are uniform). The mapping experiments 
there show that the mapping procedure manages to reduce the distance of 88% of the 
communications to one hop and to achieve an average communication distance in the 
system of less than 2 hops (see Figure 5.4 to Figure 5.7).  
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6.2.2. Scheduling approaches 

Compared to a fully-static system, in our system application scheduling is 
simplified thanks to a combination of applications with a simple structure and the 
specific approach we take for providing predictable system operation. In a system with 
fully-static scheduling all the computation and communication in the system is driven 
by a global schedule; the start time and duration of all tasks and communications is 
fixed by the schedule. To schedule a new application, the system has to recompute the 
global schedule for all applications. This may be a simple task when the system is not 
busy (no other applications are running), but in general when the system has been 
running for some time, computing a schedule is a NP hard problem [69, 73]. Such a 
complexity is already difficult to cope with in static systems where scheduling is 
performed at compile time, but it is not acceptable for our dynamic system.  

In our system we employ a technique, called self-timed scheduling [73], for 
achieving predictable system operation. This technique does not require computation of 
a global schedule, it relaxes the scheduling constraints compared to fully-static 
scheduling and thus reduces the scheduling complexity.  

Although applying a static schedule is sufficient for providing predictable system 
and application performance, fully-static scheduling applies more restrictions on the 
system operation than is necessary for achieving predictability. For example, if we 
consider a video application, the required fixed frame rate at the output of the 
application does not imply that a given pixel in the frame must be ready at the exact 
time as is provided by the static schedule. It only implies that the pixel must be ready 
any time before the frame release time. The fixed execution times in a fully-static 
system also cause difficulties when the execution times are data dependent. To fit such 
an application into a static schedule, the variations have to be compensated by 
introducing data buffers that are appropriately sized for the specific application. 

In contrast with fully-static scheduling, self-timed scheduling does not really 
schedule the system operation, but the computation and communication is data driven; 
tasks and communications are started when the required data is present and space is 
available for storing the result. Self-timed scheduling only requires that the upper bound 
on the task execution times and the communication times are known. In our system 
these are not difficult to obtain because of the specific class of applications we are 
interested in. The communication times are a direct function of the provided network 
throughput guarantees and the amount of communicated data. Since the PEs are single 
task processors and the tasks running on them do not interfere with other tasks, the task 
execution times are the same us times provided by the compiler. The worst case 
execution time of tasks running on a shared processor can also be derived [83]. 

The cost to pay for employing self-timed scheduling is a small amount of additional 
hardware that provides the data driven operation. The additional hardware required 
constitutes of handshake circuits that implement blocking read and blocking write for 
data exchange between the NoC and the PEs. However, since a self-timed system 
naturally handles variable (data dependent) execution times, it avoids the application 
dependent buffering required in fully-static systems, so on the other hand self-timed 
scheduling simplifies the architecture.  

Another reason to prefer self-timed scheduling over fully-static scheduling is that 
fully-static scheduling is difficult to apply in GALS (Globally-Asynchronous Locally-
Synchronous) systems. To work to a global schedule, the system must have a global 
notion of time, which is missing in GALS systems because no global clock is 
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distributed there. In contrast, self-timed scheduling does not require global notion of 
time and so is suitable for GALS systems. The ability to apply the chosen scheduling 
approach in a GALS system is advantageous since it is expected in the near future that 
more and more systems will be designed as GALS systems because of the cost of the 
global clock distribution in the future semiconductor technologies (see Chapter 1).  

6.3. Self-timed operation 

We continue by presenting how streaming applications run on our self-timed 
system. Figure 6.2 presents a streaming pipeline application mapped on our system. The 
application pipeline consists of n tasks, denoted as P1 to Pn, running on separate PEs. 
The processed data items are transported between the PEs by the NoC. The NoC and the 
PE exchange data through the PE local memory (MEM); the received data items are 
loaded in the MEM and after processing they are read from the MEM and transmitted to 
the next PE. The task running on a PE reads from the MEM the arrived data items, 
processes them and stores the results back into the MEM. The data exchange between a 
PE and the NoC is handled by a network interface (NI) unit which implements the 
blocking read and write to the MEM needed to provide the self-timed behaviour. For 
example, when the input data buffer reserved in the MEM for arriving data items is full, 
the NI stops receiving and holds the next data item blocked in the network. This 
respectively blocks the data item transmission in the previous PE. Similarly, the data 
transmission is blocked when the output data buffer is empty and there is not yet a next 
data item ready to be transmitted. In the same way a task running on a PE blocks when 
the input data buffer in the MEM is empty or when the output data buffer is full.  

 

Figure 6.2: A streaming application mapped on a multiprocessor architecture 

The performance of the application is determined by the time the tasks need to 
process a data item and by the time needed to communicate a data item between two 
PEs (provided no blocking occurs). These times we call respectively processing and 
communication time. To predict the application performance, all the processing and 
communication times of the application must be known. When these times are data 
dependent, their upper bound must be known.  

Besides the processing and communication times, the application performance also 
depends on whether processing and communication in a PE can be performed 
simultaneously. The parallelism between processing and communication is restricted by 
the MEM. Since all of the three operations receiving, processing and transmitting a data 
item requires access to MEM, these operations can be performed in parallel only if 
MEM supports parallel access. Based on the simultaneous access supported by the 
MEM we can distinguish the following three cases of parallelism in a PE: 
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i). single access – the MEM allows only one access at a time and so only one 
operation can be performed at a time. The operations receive, process and transmit are 
performed sequentially. 

ii). double access – the MEM can be accessed by two entities simultaneously. The 
processing and communication are performed in parallel. 

iii). triple access – the MEM can be accessed by three entities simultaneously. 
Receiving, processing and transmitting are performed in parallel. 

To allow multiple accesses, the MEM can be implemented either as multi-port 
memory or as multiple banks of single port memories. Thus, the three cases above 
correspond to the following memory organisations: single-port MEM, dual-port MEM 
and triple-port MEM or MEM consisting of single, two or three memory banks. In any 
case, the cost of enabling more parallelism is a higher memory cost in terms of area and 
energy. If separate memory banks are used, the number of banks and respectively the 
area is proportional to the number of memory ports. In case of a single bank multi-port 
memory, the area increase is even higher because besides of the larger memory size 
needed, the memory complexity increases too. The energy cost of a memory access 
scales linearly with the memory size [81]. 

To predict the application performance in a self-timed system (for the purposes of 
scheduling) we build an application model that captures all the aspects that influence the 
applications performance – the processing and communication times, the effect of 
blocking due to the self-timed operation and the parallelism enabled by the PEs memory 
organization. For modelling we use a standard modelling technique called homogeneous 
synchronous data flow (HSDF) graphs, which we now briefly present. 

6.4. HSDF graphs and MCM analysis 

Homogeneous Synchronous Data Flow (HSDF) [50, 73] is a model of computation 
suitable for describing parallel DSP applications. The model is based on a special type 
of directed graphs, called HSDF graphs. A vertice of an HSDF graph is called an actor; 
it models some activity. An actor is characterised by an execution time given as a label 
of the actor. A graph edge represents a dependency between the actors at the end points 
of the edge. The actors interact by exchanging tokens over the connecting edges. In 
principle an edge behaves like an unbounded FIFO buffer where the tokens are stored.  

When there is at least one token preset on each input edge of an actor, the actor is 
executed (also called fired). After a time period equal to its execution time the actor 
produces one token on each of its output edges. To provide that a second execution 
cannot start before the first one has finished the actor is assigned a self-edge with a 
single token.  

Figure 6.3 shows an example HSDF graph that models a bounded FIFO buffer with 
a capacity of two data items. The two actors model respectively the FIFO write and 
FIFO read operations. Writing into the FIFO takes time ET1 and reading from the FIFO 
takes time ET2 – these are the actors execution times. The data items that are written 
into the FIFO arrive as tokens on the input edge IN and the data items that are read 
depart as tokens on the edge OUT. The number of tokens on the cycle between the two 
actors corresponds to the buffer capacity. Each token on the upper edge corresponds to 
an empty buffer space and each token on the lower edge corresponds to a full buffer 
space. When a token arrives on the edge IN, the actor Write is executed, consuming an 
empty buffer space and producing a full buffer space. Subsequently, executing Read 
consumes a full buffer space and produces an empty buffer space and a data item on the 
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OUT edge. In the FIFO model shown, the data are read out of the buffer immediately 
after they are written. In a more practical example additional input edges that enable the 
execution of the actors may be present.  

 

Figure 6.3: HSDF model of a FIFO buffer of capacity two data items 

Given an HSDF graph, we can derive its throughput in terms of the number of 
tokens processed per time unit by applying a standard analysis technique for 
synchronous data flow models called Maximum Cycle Mean (MCM) analysis [15, 73]. 
MCM analysis examines all simple cycles in an HSDF graph G and determines their 
cycle mean. The cycle mean of a simple cycle is defined as the ratio between the sum of 
the execution times of all the actors on the cycle and the number of tokens on the cycle:  

 (6.1) 
)(

_
ctokens

ET

meancycle ci
i∑

∈= , 

Here c is a simple cycle in G, the sum is taken over all actors that belong to c. tokens(c) 
gives the number of tokens on the cycle c. MCM analysis consists of calculating the 
cycle mean for every simple cycle in the analysed graph G and selecting the maximum 
calculated cycle mean. Thus, the MCM of a graph G is: 
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Here the max function is taken over all simple cycles in G. The cycle with the maximal 
cycle mean is called the critical cycle, and its cycle mean determines the graph 
throughput. The throughput of the analysed graph in [token/s] is the reciprocal of the 
maximum cycle mean: 
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As an example we calculate the throughput of the FIFO model from Figure 6.3. The 
graph in Figure 6.3 contains three cycles – two self edges with one token and one cycle 
with two tokens. The means of these cycles are ET1, ET2 and (ET1+ET2)/2 and the MCM 
is therefore max(ET1, ET2, (ET1+ET2)/2). The graph throughput is then TH = 1/max(ET1, 
ET2, (ET1+ET2)/2). 

 
HSDF graphs have two important properties [16]: periodicity and monotonicity. 

The periodicity property means that after a transient period in the beginning, the 
execution of a strongly connected HSDF graph will exhibit periodic behaviour. The 
monotonicity property means that the throughput of a HSDF graph is a non-decreasing 
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function of the execution time of the actors, or in other words, decreasing these 
execution times may only lead to equal or higher throughput. In our models the 
execution times can vary, but we label the actors always with the worst case execution 
times. Hence, according to the monotonicity property, by applying the MCM analysis 
we derive the worst case throughput of the graph.  

Applying MCM analysis requires finding all the simple cycles in the HSDF graph, 
which depending on the graph might not be a simple task to perform at run-time. 
However, in the case of our system, cycles are found and analysed already at compile 
time, as at run-time only derived results are used. Thus, the more complicated part of 
the modelling process is performed off-line and it is not an obstacle for the real-time 
system operation.  

6.5. Predicting throughput of an application  

We use the HSDF model and apply MCM analysis for predicting the throughput of 
streaming applications running on our system. We need this prediction in the scheduling 
step (see Figure 6.1) to guarantee the throughput of the application being started. After 
the mapping the application is modelled as a HSDF graph using the information about 
the memory organization of the PEs where the application runs and the actual execution 
times of the tasks.  

In this section we present how the applications are modelled and their throughput is 
derived. We first model a single application task running on a PE, considering the three 
options for the PE memory organisation. Then we extend the model for a complete 
application. 

6.5.1. Throughput of a single application task 

Consider a single application task running on a PE. As discussed earlier, we have 
three options for the PE memory organization: single-port, dual-port and triple-port 
memory. For each of the three cases we construct an HSDF model of a task and then we 
apply MCM analysis on the model to derive the task throughput. 

To model a task as an HSDF graph we need three actors: one for receiving a data 
item, one for processing and one for transmitting (these are the three basic operations 
performed by the PE). We refer to these actors as the receiving, processing and 
transmitting actors. To the receiving and transmitting actors we also refer as the 
communication actors.  

We adopt the following notation. The processing actor of task i is denoted as Pi and 
its processing time is denoted as PTi. The sending actor, which is the communication 
actor with the next task, is denoted as Ci and its sending time is denoted as CTi. 
Respectively, the receiving actor, which is the communication actor with the previous 
task, is denoted as Ci-1 and its receiving time is denoted as CTi-1. The ratio between the 
communication and processing times depends on the complexity of computation and the 
amount of communicated data. For our system we expect the processing and 
communication times to be of the same scale.  

Single-port memory organisation 

A single-port memory allows only one of the three actors to be executed at a time. 
Following the data dependencies, the natural order in which the actors are executed is: 
receiving, processing and transmitting. After each data item this cyclic pattern is 
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repeated for the next data item. We model this task behaviour with the HSDF graph of 
Figure 6.4. The graph contains one cycle with one token. The token in the cycle is 
circling around the actors allowing only one of them to execute at a time. The token can 
be interpreted as a grant for memory access – the actor that currently has the token has 
access to the memory. The three self edges provide that an actor fires only after its 
previous execution finishes.  

Ci-1

Pi

Ci

CTi-1 CTi

PTi

 

Figure 6.4: An HSDF model of a task running on a PE with a single-port data memory 

Applying MCM analysis we derive the throughput of the graph. From equations 
(6.2) and (6.3) we find the MCM and the throughput of the graph in [token/s]: 
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Since a grant for memory access is given for the time of processing/communicating 
a single data item, this result is interpreted as the worst case throughput in [data item/s] 
of the task i running on a PE with single-port data memory. From (6.5) it follows that to 

guarantee a lower bound THR on the stage throughput (THR≤TH1), we must have that: 

(6.6) 
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This result is illustrated by the time-diagram in Figure 6.5. The diagram represents 
one period of the task operation. In this period one data item is received, processed and 
sent. To provide a throughput of THR, the operation period must be less than or equal to 
1/THR, which is expressed by (6.6). The task operates as follows. The processing of a 
data item (PTi) starts immediately after the data item is received (CTi-1). Because of 
blocking induced by self-timing a waiting period (Wi,1) may be introduced after the 
processing and before transmitting the data item (CTi) when the next stage is not yet 
ready to receive. A waiting period (Wi,2) may also be introduced after transmitting the 
data item when the previous stage is not immediately ready to send the next data item.  
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Figure 6.5: One period of the operation of a PE with single-port memory 

Dual-port memory organisation 

On a PE with a dual-port memory two of the three actors can be executed at a time. 
The PE is organized such that grants for the memory ports are given to the actors in a 
cyclic fashion following the data dependencies. This behaviour is modelled also by the 
graph in Figure 6.4, but this time with two tokens on the main cycle, each token 
corresponding to a memory port. An example time-diagram of the PE operation is 
presented in Figure 6.6. While the PE is processing the current data item, the NI 
transmits the previously processed data item and then receives the next data item. 
Because of blocking waiting times Wi,1, Wi,2 and Wi,3, may be introduced.  

 

Figure 6.6: One period of the task operation on a PE with dual-port memory 

Applying MCM analysis to the graph with two tokens, the throughput is: 

(6.7) 
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This is the worst case throughput in [data item/s] of the task i running on a PE with 
dual-port memory. From (6.7) it follows that to guarantee a lower bound THR on the 

stage throughput (THR≤TH2), the following system of inequalities must hold: 
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(6.8)  

R

i

R

i

R

i

R

iii

TH
CT

TH
PT

TH
CT

TH

CTPTCT

1

1

1

1

2

1

1

≤

≤

≤

≤
++

−

−

 

The first inequality in (6.8) states that the time for receiving, processing and 
transmitting a data item must be less than two times the data arrival period. This is two 
times longer than the time constraint in the single-port memory case. A comparison 
between Figure 6.5 and Figure 6.6 shows that with a dual-port memory the PE has more 
time to process a data item and hence can work at a lower frequency than with a single-
port memory. With a dual-port memory it is possible to achieve 100% PE utilization, 
which is not possible with the single-port memory because of the alternation of 
processing and communication. In the case of a dual-port memory the communication 
times can also be longer than in the case of single-port memory. This means that 
communication channels with lower throughput are needed to communicate the same 
amount of data. Thus, the communication throughput demands are reduced and the NoC 
traffic conditions are relaxed.  

The organisation scheme of PE with a dual-port memory given here is one of 
several possible; however it is the one achieving higher throughput.  

Triple-port memory organisation 

When a task is running on a PE with a triple-port memory, all three actors can 
execute at the same time. The task operation in this case is illustrated by the example 
time-diagram in Figure 6.7. The waiting times shown in the figure may be introduced 
due to blocking.  

 

Figure 6.7: One period of the operation of a PE with three-port memory 

The HSDF graph that models the task operation is the same as in the previous two 
cases, but now the graph cycle contains three tokens. Applying MCM analysis to this 
graph, the task throughput is: 

(6.9)  
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Equation (6.9) gives the worst case throughput in [data item/s] of task i running on 
a PE with triple-port data memory. From (6.9) it follows that to guarantee a lower 

bound THR on the task throughput (THR≤TH3), the following system of inequalities 
must hold: 

(6.10)  
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The triple-port memory relaxes the constraints on the execution times even further 
than the dual-port memory case. The communications can be extended along the entire 
period 1/THR and the required communication throughput can be reduced to the 
minimum. It is also possible to achieve 100% PE utilisation. 

6.5.2. Comparison 

In all three cases of PE memory organization a task is modelled as a simple HSDF 
graph and predicting the task performance requires only a straightforward analysis. 
Since the graphs depend only on the PE memory organization and not on the specifics 
of the application, the modelling and the analysis can be done off-line. What needs to be 
done at run-time for predicting the task performance is simple: i) choosing the analysis 
result associated with the memory organization of the PE where the task runs and ii) 
substituting the actual processing and communication times.  

Table 6.1 summarises the task performance results. For the three cases of memory 
organisation the table gives the task worst case throughput and the constraints on the 
execution times implied by a given application throughput bound THR. 

Table 6.1: Summary of the results for a single pipeline stage running on a PE 
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Comparing the worst case throughput we have:  
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(6.11)  321 THTHTH ≤< , 

which confirms the intuitively expected result that increasing the number of MEM ports 
improves the PE performance. However, as discussed earlier, the memory area and 
energy cost increase proportionally.  

PE utilization 

Considering system efficiency, it is desirable that the PEs are highly utilized. The 

PE utilization ρ is defined as the fraction of the time the processor is busy processing 
data items. For a periodic task running on a single-task PE, the PE utilization can be 
defined as the ratio between the period PTi in which the PE processes a data item and 
the data arrival period. For a real-time application with a throughput THR the average 
data inter-arrival period is 1/THR. Thus: 

(6.12)  iR PTTH ∗=ρ  

If two PEs are running the same task, the one with higher utilisation has more time 
to perform the task. Hence, it can operate at a lower clock frequency which saves 
energy. Therefore, higher PE utilisation is desirable also because it improves the system 
power efficiency. 

The maximal PE utilization that can be achieved for the different memory 
organizations is derived by substituting (6.12) in the constraint inequalities given in 
Table 6.1. The results are presented in Table 6.2.  

Table 6.2: Maximal achievable processor utilization 

 

A 100% PE utilisation can be achieved with a dual-port memory, but only with 
appropriate constraints on the communication times. Employing three-port memory 
increases the memory cost, but only reduces the communication throughput demands. A 
100% PE utilization cannot be achieved with a single-port memory.  

The PEs memory organisation is a system design time choice which influences the 
throughput and the utilisation of the system. The information about the PEs memory 
organisation is used at run-time for predicting the throughput of applications.  

6.6. Throughput of the whole application 

A model of the whole application is constructed by combining the separate models 
of the application tasks. Since the applications have a pipeline structure, the task models 
are just concatenated in a pipeline. In principle, the throughput of the application is 
determined by the throughput of the slowest task in the pipeline.  
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Figure 6.8 presents an example model of a pipeline of three tasks running on PEs 
with single-port memory. The concatenation of the task models is done by merging the 
sending and receiving actors of consecutive stages, which assumes that the sending and 
receiving start and finish at exactly the same time. Such an assumption neglects the 
network delay due to the network buffering. Although the network buffering is reduced 
to minimum, the network still buffers a small amount of data (few words) and this 
introduces a small delay between the moments when sending and receiving start at both 
ends of a communication channel. However, neglecting this delay is justified when the 
pipeline throughput is considered. The pipeline throughput is determined by the 
operation rates of its stages. Introducing a delay in the inter-stage communications 
brings offset in the stages operation periods, but does not change the operating rate of 
the stages. Therefore, neglecting the propagation delay in the inter-stage 
communications does not change the pipeline throughput result.  

Communication delay should be taken into account when the pipeline latency is 
critical. To express the delay explicitly in the application HSDF graph, the graphs of the 
separate tasks are connected serially by introducing a new actor between the sending 
and receiving actors. The execution time of the new actors equals the delay of the 
communicate channels between the tasks. 

C0

P1

C1

P2

C2

P3

C3

CT0 CT1 CT2 CT3

PT1 PT2 PT3

 

Figure 6.8: An HSDF model of an application of three tasks running on PEs with a 
single-port data memory merging the send of the previous with the receive of the next 

The throughput of the application in Figure 6.8 is found by applying equation (6.5) 
for each of the three tasks in the pipeline: 
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Respectively, the constraint inequalities implied by a given throughput bound THR 
are derived by applying inequality (6.6) for each of the three tasks: 

(6.14)  
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If the system of inequalities (6.14) is satisfied we guarantee that the application 
throughput is greater than or equal to THR.  

When the application runs on PEs of different type, then the equations and 
constraint inequalities associated with the corresponding PE types are selected. Thus, to 
predict the application performance at run-time we only select the appropriate equations 
and substitute in them the actual execution times. To guarantee the application 
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performance, at run-time we select the appropriate constraint inequalities and solve the 
constructed system of inequalities to find the required upper bounds for the processing 
and communication times. These bounds are then provided by the system by requesting 
proper communication services from the NoC and by configuring the PEs clock 
frequencies.  

In conclusion, scheduling an application at run-time on a self-timed system requires 
solving a small system of linear inequalities. Solving such system is a task of square 
complexity which in combination with the small system size (less than ten variables) 
will result in much lower overhead than the overhead for computing a global schedule 
in a fully-static scheduled system (an NP hard problem). Therefore, because of its lower 
runtime overhead self-timed system organisation is more suitable for dynamic systems 
than the full-static organisation.  

6.7. Example 

We illustrate with an example how applications are scheduled on a self-timed 
system. For the example we use again the HiperLAN/2 receiver which we schedule on 
our system. How the HiperLAN/2 receiver is partitioned to run on our system is 
discussed in [67]. The application is partitioned in a pipeline of three tasks shown in 
Figure 6.9. The tasks are compiled for Montium processing tiles [39] and the processing 
times per data item of 256 bytes reported by the compiler are given in the figure (in 
clock cycles). The receiver has been mapped on Montium tiles and our objective now is 
to schedule it, or in other words to guarantee its real-time operation.  

The HiperLAN/2 receiver processes information received on a wireless 

communication channel. Every 4 µs a new data item arrives on the input of the receiver 
and the receiver must be ready to process it. Thus, the data inter-arrival period defines 
the real-time constraint on the receiver operation. To be able to process all arriving data 

items, the receiver must have a throughput of at least THR = 1/4 µs = 250 [data 
item/ms].  

 

Figure 6.9: Pipeline of a HiperLAN/2 receiver 

To guarantee this throughput for the receiver, we first construct a system of 
constraint inequalities. We select the inequalities associated with the memory 
organisation of the used PEs. In our case, the Montium tiles have single port memories, 
so we construct the system by combining three inequalities (6.6): 

(6.15)  
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If we provide that (6.15) is satisfied, then the receiver throughput is always at least THR 
and the receiver real-time operation is guaranteed.  

The Montium tiles are set to run at a fixed clock frequency of 100 MHz. Hence, the 

actual task execution times are PT1=0.67 µs, PT2=2.04 µs and PT3= 1.1 µs. Substituting 
this in (6.15) together with THR=250 [data item/ms] we have: 

(6.16)  
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Any solution of the system of inequalities (6.16) gives a set of worst case 
communication times for which the required application throughput THR is guaranteed. 

One possible solution is: CT0=2.35µs, CT1=0.98µs, CT2=0.98µs, CT3=1.92µs. In 
practice, additional optimisation constraints can be considered when deriving the 
communication times. For example, minimising the mean communication throughput 
requested for the application. Having the communication times and the size of the 
communicated data items we calculate the throughput of the communication channels 
that has to be requested from the NoC. The communication channels are requested by 
calling the central routing function (see Section 5.3) which provides a channel in less 
than a millisecond. 

Additional efforts can be made also for improving the PE utilisation. With the 

processing times given above and THR=4 µs, the utilisation of the tiles is ρ1=17%, 

ρ2=51%, ρ3=28%. The utilisation can be improved by adjusting the PEs clock 
frequencies and the communication throughput. However, since the tiles use a single-
port memory, it is not possible to achieve 100% tile utilisation. 

6.8. Conclusion 

We presented how our Network-on-Chip (NoC) can be integrated in a system such 
that predictable system operation is provided. The main difference between our network 
and other networks is in the way in which predictable operation is achieved. While other 
NoC based systems use fully-static scheduling leading to high to scheduling 
complexity, we employ self-timed scheduling. In contrast to fully-static system, a self-
timed system in combination with the simple structure of our applications reduces the 
scheduling complexity, which allows application scheduling to be done at run-time as 
required for our dynamic system. Self-timed organisation is also more suitable for 
GALS systems. Our network is directly fit for self-timed system organisation. To the 
best of our knowledge our system is the first NoC based systems that employs self-
timed scheduling. 

The PE memory organisation is a system design time choice which influences the 
performance and utilisation of a self-timed system. We discussed three cases of memory 
organisation: single-, dual- and triple-port memory organisation. The more memory 
ports, the higher the application performance and the PE utilisation. However, the 
memory cost (in terms of area and energy) also increases with the number of ports. The 
lowest cost at which 100% PE utilisation can be achieved is using dual-port memory 
which doubles the memory size compared to single-port memory.  

The results presented in this chapter confirm that the NoC solution we propose is 
able support the overall operation of our dynamic real-time system. It is possible to 



 

 125

achieve a predictable operation and to guarantee performance at a system level as the 
overhead for providing performance guarantees is low enough to allow dynamic system 
operation.  
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Chapter 7  
 
Conclusion 

 
The relentless development of semiconductor technology in the last four decades 

has resulted in integrated circuits (ICs) with higher and higher transistor density, thus 
allowing chips to accommodate more and more functionality. Today we can integrate a 
complete system on a single die; such a system is known as a System-on-Chip (SoC). 
However, the high density reached in the recent years cause problems due to the smaller 
dimensions of IC features. These problems complicate the SoC design and begin to 
hamper the technology utilisation. The main problems, as discussed in Chapter 1, are:  

- the signal integrity problem – low performance global wires, 
- the design productivity gap – high design complexity, 
- the clock distribution problem – expensive global clock distribution. 

In this thesis we investigate a new approach for organising the global communications 
of a SoC. This approach provides a general solution for the above three problems. We 
propose a network-on-chip (NoC) architecture – an on-chip communication solution 
that matches the on-chip global communication requirements with the constraints of the 
underlying VLSI technology. We investigate the NoC concept in the context of a 
specific class of SoC architectures – a multiprocessor SoC for streaming Digital Signal 
Processing (DSP) applications.  

The novelty of our NoC is its ability to operate in a dynamic environment while 
providing guaranteed services (GS) as well as best effort (BE) services. We evaluate our 
solution by examining it from different perspectives: from low level implementation 
details, via its architecture, to the integration into a high level system organisation. The 
results confirm that we succeeded in finding a practical NoC solution which has a run-
time overhead that is low enough to support dynamic system operation.  

In Chapter 1 we define three research questions to guide us through our 
investigation. The first question is: 

 
1. What network techniques are appropriate to minimize the network overhead 

while maintaining satisfactory performance?  

 
It asks for appropriate networking techniques for building a NoC which match the 
constraints of the underlying technology with the system requirements. In search for an 
answer we review the available techniques and focus on virtual channel flow control. 
Virtual channel flow control is an efficient flow control mechanism which requires a 
small buffer size, hence has a small router area, and has an acceptable performance for 
our application domain. It also allows for an arbitrary packet length, which is 
convenient when handling streaming traffic. Our NoC solution is one of the first to 
employ virtual channel flow control (Chapter 2). 

The main challenge for the network design is to provide support for GS and BE 
traffic. While most NoCs proposed so far achieve that by combining two separate 
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network solutions, one supporting GS and one supporting BE traffic, by using virtual 
channels (VCs) we manage to provide a single integrated solution capable of supporting 
both traffic types. To achieve this result we propose a router architecture with a 
predictable performance. We combine the router architecture with a virtual channel 
reservation scheme that extends the predictability at the network level. Thus, our 
network is able to provide GS as well as BE services (Chapter 3). 

Our second research question is: 
 
2. What is the overhead and the performance of a NoC architecture? 

 
This asks for a study into the actual NoC performance and all the costs incurred by 
employing our NoC. This includes the implementation cost as well as the exploitation 
costs, e.g. system level support.  

Although VCs complicate the network routers, we demonstrate that by using 
appropriate design techniques we can achieve an acceptable area overhead and 
satisfactory performance. We propose an efficient router design which reduces the 
implementation area of a virtual channel router, making it comparable to the area of 

other NoC solutions. With our design, the area of a router in 0.13 µm technology ranges 
from 0.05 – 0.25 mm2 depending on the router parameters. Compared to the area of the 
processing elements in the system, the network area overhead is estimated at only 5 – 
15%. The achieved channel throughput is several Gbit/s, enough to satisfy the system 
demands in our application domain. The implementation results also show that the 
router area is most sensitive to the size of the buffers while the router performance is 
most sensitive to the number of VCs (Chapter 4). 

Our virtual channel reservation approach for providing service guarantees requires a 
centralised system coordination, as do all other proposed NoC solutions. However, the 
central support required by our solution is lighter compared to the other solutions. Our 
approach reduces the typical NP-complexity of the support tasks to at most quadratic 
complexity. The light weight support enables our approach to be applied at run-time, for 
a dynamic environment. To the best of our knowledge our NoC is the first one that is 
able to provide guaranteed services requested at run-time (Chapter 5). 

The third question we define is: 
 
3. What is the optimal use of the NoC? 

 
This question addresses the overall system operation. To answer it we investigate the 
operational aspects of our network and how the network can be integrated into a system.  

The application of virtual channel reservation for providing service guarantees is 
restricted to a system where the applications have a rather simple structure and where 
they generate simple traffic patterns, which is the case in our target application domain. 
For systems where the applications have a simple structure, the virtual channel NoC is 
an area efficient solution because it requires less buffer space than other networking 
techniques. However, with more complex application structures the traffic patterns get 
more complicated and thus need more network resources. Satisfying these needs more 
virtual channels are needed, and therefore the virtual channel NoC rapidly increases in 
area, its performance deteriorates and so it loses its advantages. For systems where the 
applications have a complex structure, TDM (time-division multiplexing) is a more 
area-effective approach for providing guaranteed services. 
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The performance of the virtual channel reservation approach is strongly influenced 
by the communication locality. Locality makes the performance of the approach less 
sensitive to the network size, thus it improves the scalability. Furthermore, by 
optimising the communication locality the communication energy cost can be reduced 
up to three times (Chapter 5). 

Having a NoC that is able to provide service guarantees at run-time is a necessary 
but not a sufficient condition for building a predictable system for a dynamic 
environment. To find out whether such a system is feasible, we investigate whether the 
multiprocessor system can be organised such that seamless integration and efficient use 
of the NoC are achieved, and whether the overhead for system support allows dynamic 
operation. The results present evidence that a self-timed system organisation in 
combination with the simple structure of our applications reduces the overhead for 
system scheduling. Compared to the fully-static approach used so far in NoC based 
systems, self-timed organisation reduces the computational complexity for scheduling 
real-time applications from exponential to polynomial. This makes self-timed systems 
more suitable for dynamic operation than the fully-static systems. To the best of our 
knowledge, the system we propose is the first NoC based SoC that employs self-timed 
scheduling (Chapter 6). 

Future work 

We may conclude that the NoC we propose is a practical communication solution 
for a dynamic multiprocessor system for streaming DSP applications. It is a solution 
that can be built at an acceptable cost. Nevertheless, there are many possibilities to 
enhance the solution and prepare it to handle the future growth of the system size. 

By providing structured, regular and scalable chip layout our NoC solves the signal 
integrity problem and facilitates the migration of complex SoC designs to the next 
generations of semiconductor technologies. However, to secure the successful NoC 
application in future, scalability must also be provided on a higher system level. The 
performance of our NoC solution, as well as any network solution, is dependent on the 
traffic locality. In our system traffic locality is provided by the application mapping 
function. Hence, it needs to be investigated how different mapping strategies behave 
when the system size grows and how mapping can provide better traffic locality in 
future. The same applies for the traffic routing strategies, although routing performance 
is significantly improved by the traffic locality. In this respect, the relation between 
application mapping and traffic routing must be investigated in order to find out 
whether information exchange between them can improve the overall network 
performance and scalability.  

In our work we discussed only the basic operation of a dynamic system, i.e. starting 
and terminating applications at run-time. Obviously, much more can be done at run-time 
for improving the system and network efficiency. For example, it needs to be 
investigated what strategies for run-time system load optimisation and network traffic 
optimisation can be applied and how these strategies can be implemented to run as 
background optimisation routines.  

By providing system modularity our NoC solution helps narrowing the design 
productivity gap. Thanks to the modularity, modifying or adding system modules leads 
to minimal disturbances in the rest of the system. However, to further facilitate the 
modules integration we have to define a standard interface between the network and the 
modules. Standard module interfaces have already been established for buses and it 
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needs to be examined whether they can be directly applied or adapted for NoC based 
design. 

While our NoC provides the two basic classes of services needed, guaranteed and 
best effort services, there is a variety of higher level network services that can be built 
on top of these two basic classes. By providing such higher level services the network 
can further simplify the modules integration. Hence, it needs to be investigated what 
higher level services can be built to match these services to the services needed by the 
applications and the system. 

One aspect of the NoC integration which needs special attention is whether the NoC 
can facilitate post manufacturing system testing. The systems being built today are 
constantly increasing in size and complexity and that makes the system testing and 
verification a formidable task. As a part of the system the NoC also needs to be tested, 
so it is desirable for this test to be as simple as possible. Hence, it is worth investigating 
whether particular network features can simplify this test. Furthermore, serving as a 
global communication infrastructure, the NoC provides communication access to most 
of the system modules and so plays an important role in the module testing. This role 
needs to be investigated to find out whether the NoC can facilitate the testing of system 
modules. 

What has been said for the post manufacturing test is also true for the application 
development and debugging. The higher application complexity and the system 
parallelism make application development and verification a complex task. Although 
applications are most often developed in a system simulation environment, practical 
experience shows that application debugging on a real system can never be completely 
avoided. Understanding the reason of an unexpected application malfunctioning can be 
very difficult in a large multiprocessor system and any help in this direction is desirable. 
As a global communication infrastructure the NoC may be able to improve visibility of 
the system internals by making them observable. That is another network aspect that 
needs to be investigated.  

Considering the NoC implementation, a definite direction for improvement is to 
replace the current synchronous design with an asynchronous one. This will enable our 
system to operate in Globally-Asynchronous Locally-Synchronous systems and thus to 
avoid the clock distribution problem. The transition from a synchronous to an 
asynchronous design is made possible by the fact that our NoC employs only techniques 
that do not rely on global clock distribution.  

 
The NoC concepts we discuss in this thesis are the first steps in a new direction for 

SoC design. The NoC based systems are still in their infancy and have a long way to go 
before they establish themselves as a reliable practical solution. However, our work and 
the work of others confirm that the direction is right and motivates us to continue 
investigating the potential of NoC based multiprocessor systems. The knowledge we 
gain studying these systems prepares us to face the next generations of very large SoC 
designs. 
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