

A run-time reconfigurable Network-on-Chip
for streaming DSP applications

Nikolay K. Kavaldjiev

 2

Graduation Committee:

 Prof. Dr. P. H. Hartel University of Twente (promotor)
 Dr. Ir. G. J. M. Smit University of Twente (assistant-promotor)
 Prof. Dr. Ir. Th. Krol, University of Twente
 Ir. P. G. Jansen University of Twente
 Prof. Dr. H. Corporaal Technical University Eindhoven
 Dr. Ir. K. Goossens NXP Semiconductors, Eindhoven
 Prof. Dr. J. Nurmi Tampere University of Technology, Finland

Distributed and Embedded Systems Group
P.O. Box 217, 7500 AE Enschede,
the Netherlands

This research is conducted within the Gecko project
funded by the Dutch organisation of Scientific Research
NWO under project number 612.064.103.

This thesis is published in the
CTIT Ph.D.-thesis Series No. 06-91
ISSN 1381-3617

This thesis is published in the IPA Dissertation Series
under number 2007-02. The current list of titles in the
series can be found in the end of this book.

Keywords: network-on-chip, system-on-chip

Copyright  2006 Nikolay Krasimirov Kavaldjiev, Enschede, the Netherlands

ISBN: 90-365-2410-5

Printed by Wohrmann Print Service, Zutphen, the Netherlands
www.wps.nl

 3

A RUN-TIME RECONFIGURABLE NETWORK-ON-CHIP FOR
STREAMING DSP APPLICATIONS

DISSERTATION

to obtain
the doctor’s degree at the University of Twente,

on the authority of the rector magnificus,
prof.dr. W.H.M. Zijm,

on account of the decision of the graduation committee,
to be publicly defended

on Wednesday, 31 January 2007 at 15.00

by

Nikolay Krasimirov Kavaldjiev

born on 3 December 1973

in Sofia, Bulgaria

 4

This dissertation is approved by:

Prof. Dr. P. H. Hartel (promotor)
Dr. Ir. G. J. M. Smit (assistant-promotor)

 i

Abstract

With the advance of semiconductor technology, global on-chip wiring is becoming
a limiting factor for the overall performance of large System-on-Chip (SoC) designs. In
this thesis we propose a global communication architecture that avoids this limitation by
structuring and shortening of the global wires. The communication architecture is used
in a multiprocessor SoC for streaming DSP applications. The SoC is intended as a
platform for wireless multimedia devices, such as PDAs, mobile phones, mobile
medical systems, car infotainment systems, etc.

To improve the performance of the communication in our SoC we use a Network-
on-Chip (NoC) architecture. A NoC provides the chip with a high-performance global
communication infrastructure, at the same time structures the global on-chip wires and
makes their electrical parameters predictable and controllable. By contrast, the bus
solutions and the ad-hoc communications solutions used till now in SoC designs result
in long wires with unpredictable electrical parameters and require costly design
iterations for improving the communication performance.

Our specific NoC uses virtual channel flow control and source routing to provide
guaranteed communication services, as well as best effort services. Our NoC is the first
on-chip network designed for a run-time reconfigurable system. It offers fast
reconfiguration and requires low configuration overhead. Configuring a network path
takes less than a millisecond and only costs a few bytes of data overhead. Such time and
data overhead is affordable by the run-time reconfigurable SoC for the class of
streaming applications we consider.

Our NoC is particularly suitable for the specific traffic conditions created by
streaming DSP applications. These applications have a simple structure and create
simple traffic patterns but need a high data throughput. The main part of the traffic
consists of data streams that require guaranteed services. However, our NoC also
supports the small part of the traffic with fine granularity and irregular behaviour that
requires only best effort services.

The implementation area of our network router in 0.13 µm technology can be as
small as 0.05 mm2 depending on the network design parameters. A network channel
throughput of several Gbit/s can be achieved, which is enough to satisfy the system
applications demands.

The specific contributions of this thesis are:

1. We propose a NoC architecture for a run-time reconfigurable
multiprocessor SoC that supports streaming DSP applications. To the best
of our knowledge, this is the first NoC targeted at a run-time reconfigurable
SoC.

2. We propose an architecture of a virtual channel router, which in contrast to

conventional architectures is able to provide predictable communication
services and has a lower implementation area cost than conventional
architectures.

 ii

3. The predictable performance of our network simplifies the mapping of
streaming DSP applications to our multiprocessor system. System
reconfiguration can be done in linear time avoiding the NP-complete
solutions common for statically scheduled real-time systems. Thanks to this
linearity, system reconfiguration can be done at run-time.

 iii

Acknowledgements

At the end of these four years as a PhD student I have to admit that it was not easy.
Indeed it was a period in my life when many things have changed, it was the first time
for me to live far away from home – an experience that is not always easy to handle.
Here I would like to thank to all these people with whom I have worked, from whom I
have learned and who have supported me during this long period.

I would like to thank my family and especially my mother Maria and my aunts
Rosica and Ilka for their constant support and encouragement. Their love makes me feel
near home despite the distance and helps me pass the difficult moments.

First of all, I would like to express my deepest gratitude and respect to my
supervisor Gerard Smit. Supporting me in my everyday work, Gerard is always ready to
help me, to give me an advice or just talk with me without any reservation, no matter
how busy he is. He has been able to sense the slightest signs of doubts and difficulties in
my daily work and always was ready to offer his guidance, but in such delicate way that
I never lost the feeling of complete freedom in my work.

Although my promoter prof. Pieter Hartel did not work with me on a daily basis I
have learned a lot from him. Pieter is highly organised. He always amazes me with his
thoroughness and efficiency. Pieter has taught me to be more precise and critical to my
work, to question the obvious, and always look for unexpected points of view. He has
inexhaustible optimism and enthusiasm. This positive attitude motivates and encourages
me to improve.

I am much obliged to Pierre Jansen who has also helped me in my daily work.
Pierre has always listened to my problems in patience. He is always willing to discuss
and share with me his rich experience. I would like to thank Andre Kokkeler who has
reviewed the first draft of the thesis. Andre is a thorough reviewer but with a positive
attitude that helped me keeping my motivation. I like to thank Jenna Wells who has also
reviewed the thesis and provided me with a lot of helpful suggestions for improvement.

Thanks to our always smiling and cheerful secretaries Marlous Weghorst and
Nicole Baveld – always helping and never complaining. No doubt they contribute to the
positive working atmosphere.

During these years I have shared the office with a number of different roommates,
but the good and friendly atmosphere is always there. Thanks to Gerard Rauwerda,
Pascal Wolkotte, Yanqing Guo, Qiwei Zhang for being affable mates and handy source
of information. Pascal and I were working on the same subject. Pascal has always been
ready to share his view and give me his opinion. Sharing ideas with him helped me to
clear my own view.

Thanks also to Bert Molenkamp, Paul Heysters, Omar Mansour, Maarten Wiggers,
Marcel van de Burgwal, Philip Hölzenspies and the other group members for the nice
working atmosphere and for the chats. It was always nice to chat about the everyday life
with Lodewijk Smit and Michel Rosien. It was kind of a pressure release and a way to
know the Dutch habits better.

This thesis is based on the ideas developed in the Chameleon project and would not
be possible without the contributions of the members of this project. The ideas
presented here are directly related to the results obtained by Paul Heysters, Lodewijk
Smit, Gerard Rauwerda and Pascal Wolkotte.

 iv

Working at University of Twente gave me the opportunity to meet many interesting
people all over the world: Ricardo Corin and Laura Brandán Briones, Vasughi
Sundramoorthy, Cheun Ngen Chong (aka Jordan), Supriyo Chatterjea, Gabriele Lenzini,
Damiano, Kavitha, Ozlem, Anka, Marchin, Tim, Stefan, Ileana, Raluca, Mihai, Roland,
Mohammed, Sinan, etc., etc…

Vasughi and Ricardo were the first people I knew in Enschede. They have
introduced me to the Dutch culture and gave me some important tips and tricks for
survival. I remember my first day in Enschede, Vasughi took advantage on my
innocence and prepared a welcome dinner for me – a typical Malaysian meal. During
the dinner, proudly looking at me and Ricardo crying over the extremely spicy dish, she
started giving us advice how to extinguish the “”fire” in our throats: “It is useless with
beer or water, it does not work; better try sweet juice, it is most effective …”. As far as I
know there are many people who have the same experience with Vasu’s spicy meal.

Jordan has been my sport mate for a long time and this gave me the opportunity to
know him better. To him I owe my introduction to the Chinese culture and kitchen.
Jordan is a friend that cares and often has given me his moral support.

For a short time after his arrival, Supriyo and I were living in the same house.
Supriyo has shared with me that his impression then about Bulgarians was formed only
by watching strugglers and heavy weight lifters on sport TV programs. I was the first
real-life Bulgarian he met and more importantly he had to live with and understandably
this thought caused him some worries. In my opinion everything went well and I have
nice memories from that period. Supriyo was the first Singaporean I met too. He is a
very intelligent person addicted to fish.

An important part of my life in Enschede is the Bulgarian community there: Vania,
Stanislav, Chris and Aleks, Zlatko Zlatev, Christian Tzolov, Ivan Kurtev, Nikolay
Diakov, Julia Bachvarova, Natasha Jovanovich, Georg Koprinkov, Samuil Angelov,
Boris Shishkov, Boriana Rukanova, Danail Rosnev, Robina, Snoopy. It is true than not
all of them are Bulgarian but all of them helped me feel like at home and manage with
the unavoidable homesickness and the consequence of the sunshine shortage. Here I
would like to thank to two special friends of mine without whom my life in Enschede
would have been completely different – Vania and Stanislav Pokraevi. This family has
supported me in the difficult moments of my stay in Enschede. Their inexhaustible
positive attitude has assured me that there is nothing to worry about. They kept
reminding me about the nice things in life that are worth dreaming of, e.g. boza and
milinki. They have inspired and encouraged my cooking attempts and other
undertakings in my life. Recently Vania and Stanislav have been introduced to a
completely new experience – being parents of the twins Alex and Chris (aka The Boys).
As a witness of the progress of the parents and the boys since the very beginning, I can
firmly say that Alex and Chris are the most beloved boys I have ever seen. Doubtless,
these are boys with a bright future, children that will bring a lot of happiness in their
parents’ life.

Finally I want to thank my best friends Kristian, Tania and Kristin, Sasho and
Stefka, Strahil, Rostislav and Krasi, Rusi, Nadia, Milena, Koko, etc. for being with me
all this time despite the long distance between us. They are among the things that make
my country and my city of birth the best place to be, the place I will always want to
return to. I also have to thank Skype and Internet in general for make the earth smaller
and bringing the people I love close to me.

 v

Contents

Abstract.. i

Contents .. v

Chapter 1 Introduction .. 1

1.1. Introduction... 1
1.2. Network-on-Chip concept ... 1
1.3. Application domain... 2

1.3.1. Streaming DSP applications .. 3
1.3.2. Heterogeneous tiled SoC architecture ... 4
1.3.3. Dynamic reconfiguration ... 5
1.3.4. Centralised control... 5

1.4. Semiconductor technology trends ... 7
1.4.1. Signal integrity problem... 7
1.4.2. Clock distribution problem... 8
1.4.3. Productivity gap... 8
1.4.4. Directions... 9

1.5. Objectives.. 9
1.6. Contributions... 11
1.7. Structure of the thesis and related publications..................................... 11

Chapter 2 Background and related work... 13

2.1. Introduction... 13
2.2. NoC characteristics ... 14
2.3. Interconnection networks .. 15

2.3.1. Direct and indirect networks.. 16
2.3.2. Performance of interconnection networks 16
2.3.3. Network topologies... 17
2.3.4. Flow control... 23
2.3.5. Routing... 29
2.3.6. Quality of Service (QoS) .. 34

2.4. Network-on-Chip solutions ... 35
2.4.1. Circuit switching solutions... 35
2.4.2. Packet switching solutions ... 36
2.4.3. Clockless solutions ... 38
2.4.4. Summary... 39

2.5. Conclusion .. 41

Chapter 3 Network-on-Chip architecture.. 43

3.1. Introduction... 43
3.2. Wormhole router architecture ... 44
3.3. Virtual channel router ... 47
3.4. Resource allocation in a VC router ... 49

3.4.1. VC allocation ... 50

 vi

3.4.2. Switch allocation.. 52
3.5. Providing service guarantees at a network level 54
3.6. System level support... 56
3.7. Simulations ... 57

3.7.1. Setup .. 57
3.7.2. Results.. 58

3.8. Comparison... 60
3.9. Conclusion .. 62

Chapter 4 Implementation .. 63

4.1. Introduction... 63
4.2. Implementation details.. 63

4.2.1. Flit and packet format.. 64
4.2.2. Channel interface... 65
4.2.3. Input controller .. 66
4.2.4. VC allocator... 68
4.2.5. Switch allocator ... 70
4.2.6. Round-robin arbiter... 75

4.3. Synthesis results.. 76
4.4. Conclusion .. 80

Chapter 5 Evaluation of the virtual channel reservation approach 83

5.1. Introduction... 83
5.2. Network and GS services.. 84
5.3. Routing function ... 87

5.3.1. Operation... 87
5.3.2. Algorithms.. 88
5.3.3. Overhead.. 89

5.4. Spatial model of the GS traffic ... 92
5.5. Simulation experiments .. 96
5.6. Simulation results ... 97

5.6.1. Number of successful samples ... 97
5.6.2. Detour cost... 100
5.6.3. Communication energy cost... 102
5.6.4. Performance in the presence of BE traffic................................... 105

5.7. Conclusion .. 107

Chapter 6 Network integration... 109

6.1. Introduction... 109
6.2. System operation .. 110

6.2.1. Starting an application .. 110
6.2.2. Scheduling approaches .. 112

6.3. Self-timed operation ... 113
6.4. HSDF graphs and MCM analysis ... 114
6.5. Predicting throughput of an application.. 116

6.5.1. Throughput of a single application task 116
6.5.2. Comparison.. 120

6.6. Throughput of the whole application.. 121
6.7. Example .. 123

 vii

6.8. Conclusion .. 124

Chapter 7 Conclusion... 127

Bibliography ... 131

 1

Chapter 1

Introduction

1.1. Introduction

In 1965, Intel co-founder Gordon Moore made a prediction, popularly known as
“Moore’s Law”, which states that the transistor density on integrated circuits (IC)
doubles about every two years [57]. For four decades silicon technology has been
following this law and the number of transistors on a chip has been increasing
exponentially. Today, it is commonly believed that from a purely technological
perspective there are no obstacles to invalidate Moore’s Law in the next decade [93].

The higher integration level achieved following Moore’s law allows more and more
functionality to be accommodated on a chip. It is now possible to integrate a complete
electronic system, including its peripherals and all interfaces, on a single die. Such a
system is known as a System-on-Chip (SoC).

Although there are no obstacles for the semiconductor manufacturing technology to
continue reducing the IC feature size and increasing the IC integration level, there are
several emerging IC design problems that prevent the full utilization of the technology
potential. These problems are caused mainly by the smaller feature size and the high
integration level. To continue exploiting the technology efficiently they must be
overcome. This thesis addresses the main two of these emerging design problems:

- the lower performance of the global on-chip wires, which make the global
communications in large SoC designs a performance limiting factor.

- the high design complexity resulting from the higher integration density,
which makes SoC design an inefficient and time-consuming task.

We address these problems in the context of a specific class of large SoC architectures –
a multiprocessor SoC for streaming Digital Signal Processing (DSP) applications. The
solution we propose for such systems is a Network-on-Chip (NoC) communication
architecture. A NoC replaces the slow ad-hoc global on-chip wiring with a high
performance communication infrastructure which facilitates structured modular system
design and thus helps reducing the system design complexity.

1.2. Network-on-Chip concept

A NoC [17, 25, 45, 60] is a lightweight communication network that interconnects
the system modules replacing the traditional on-chip bus. An example SoC employing a
NoC is shown in Figure 1.1. The chip area is divided into square tiles. Each tile contains
a system module (e.g., a processor, DSP, peripheral controller, memory subsystem,
etc.). Such a system is referred to as a tiled system [25]. The NoC is built of routers

 2

interconnected by network channels. Each tile is connected to a network router through
a standard interface. Tiles communicate only by sending messages over the network
through their interfaces.

Figure 1.1: An example SoC architecture employing an on-chip network

The NoC serves as a global communication infrastructure. It provides shared global
interconnects that can be highly optimised since its development cost can be amortised
across many designs. The NoC can provide short and structured global wires with well
controlled electrical parameters. This eliminates time consuming design iterations for
improving the signalling performance and enables the use of high performance circuits
to reduce the communication latency and increase the bandwidth [41, 88]. The network
supports parallel communication, so a high aggregate bandwidth can be obtained.
Increasing the number of modules in the system also adds routers and channels; hence,
the aggregate bandwidth scales with the size of the system. By offering a standard
interface, the network facilitates the reusability and interoperability of modules.

1.3. Application domain

The NoC proposed in this thesis is used in the Chameleon project [39]. The
Chameleon project aims to design a dynamically reconfigurable multiprocessor SoC for
wireless multimedia systems. Potential application areas for such a platform are mobile
multimedia devices (e.g., PDAs, mobile phones), mobile medical systems, on-board
multimedia systems, smart sensors (e.g., remote surveillance cameras), etc. These
systems have to meet challenging requirements such as: high performance, low power
consumption, support for Quality-of-Service (QoS) and small size. As part of the
system, the NoC must also contribute to these requirements.

 3

Below we summarise the architecture of the SoC defined by the Chameleon project.
We focus on the aspects relevant to the NoC design. We start with typical system
applications and then present the system architecture. Later we briefly discuss the
organization and the operation of the system.

1.3.1. Streaming DSP applications

The majority of applications in our application domain are streaming DSP
applications. Examples of such applications are wireless baseband processing
applications (e.g., HiperLAN/2, WiMax, DAB, DRM, DVB) and audio/video
processing applications (e.g., MPEG codecs). Streaming DSP applications operate on
streams of continuously arriving data items which are processed one by one in the order
of their arrival and the results are released as an output stream.

Typically, streaming DSP applications are structured as shown in Figure 1.2 [23,
67, 87]. Two parts can be recognized in this structure – a processing part and a control
part. The processing part consists of a number of processing blocks, Pi, arranged in a
pipeline. The streamed data items pass through the pipeline and each processing block
there applies some transformation on them. Typically, the transformations are
mathematical algorithms, such as Fast Fourier Transforms (FFTs) or Discrete Cosine
Transforms (DCTs), demanding intensive computation. Therefore, the processing part
has high computational demands. Since data items pass through the pipeline
periodically, the processing blocks show repetitive timing behaviour. Because many
applications process streams in real-time, their processing part requires performance
guarantees and the pipeline throughput has to be guaranteed. Hence, the processing part
demands Quality-of-Service (QoS) guarantees.

P1 P3 Pn

Control

Processing part

Control part

Figure 1.2: Typical structure of a streaming DSP application

The control part of the application implements the control functions associated with
adaptation and efficient operation. For example, in a wireless baseband processing
application, the control part could monitor the error rate of a communication channel
and change the modulation scheme to increase the throughput or to reduce the required
computation power. The control part shows more reactive and irregular behaviour and
requires little computation. As long as the control part only improves the application
efficiency by adding adaptability, its performance is not critical to the real-time
operation of the entire application [71]. Hence, the computation and communication in
the control part do not require strict performance guarantees.

Streaming DSP applications are computationally intensive, but they have a
relatively simple structure. The aim of the Chameleon project is to provide a
multiprocessor platform that exploits this simple parallelism naturally present in the
pipeline structure of these applications. The potential of the simple pipeline structure to

 4

simplify the design of predictable multiprocessor systems has also been recognized by
others [49, 69]. The simple application structure simplifies a number of organisation
issues in the Chameleon multiprocessor system. Because parallelism is naturally present
in the application structure, partitioning the application into parallel tasks is
straightforward. The simple data dependencies between the tasks ease the scheduling of
applications on multiple processors. The running applications also generate simple
communication patterns, which, as we shall see, help to achieve predictable
communication behaviour. In general, the regular parallelism in streaming applications
facilitates achieving a predictable and guaranteed operation of multiprocessor systems.
Since the majority of applications running on our multiprocessor system are streaming
DSP applications, this is the type of parallelism we consider.

Running a streaming DSP application on multiple processors entails mostly
streaming communication between the processors. The communication will last for the
duration of the application, which for our application domain is estimated from seconds
to hours, e.g., watching a film, making a phone call, using a wireless communication
channel, etc. Therefore, the traffic in the system consists of semi-static data streams.

The throughput of the data stream between the tasks in the processing part is
application dependent. For more demanding applications the throughput is hundreds of
Mbit/s. For example, a HiperLAN/2 receiver processes a stream demanding 512 Mbit/s
[67]. The size of the data items is also application dependent, for example, it can be a

14-bit audio sample from an analogue-to-digital converter (ADC) or 1024×1024×24-bit
video frame. Since often streams are processed in real-time, this traffic requires
performance guarantees.

In contrast to the stream processing part, the communication in the application
control part consists mainly of short control messages – several bytes of control or state
information. To estimate the control traffic, we make the following assumption – each
task in the processing part of a HiperLAN/2 receiver generates and receives a 10 Byte
control message for every processed data item. This is an overestimation since most
tasks do not communicate control messages for every data item. The control traffic
generated by the application is then estimated at 10% of the total traffic, while the
remaining 90% is streaming traffic. This is a rough estimation that gives the maximal
amount of control traffic in the system. The estimation for other baseband processing
applications and also for video applications gives similar results.

Thus, we assume the following model for the system traffic generated by streaming
DSP applications: 90% of the traffic consists of high throughput semi-static streams that
require communication guarantees; 10% of the traffic consists of fine granular control
messages that require no strict service guarantees.

1.3.2. Heterogeneous tiled SoC architecture

The SoC proposed in the Chameleon project has a tiled architecture (Figure 1.1).
The tiles are heterogeneous reconfigurable processing elements (PE). A tiled
architecture has a number of advantages. It can achieve high performance because it
supports massive parallelism. It is a future-proof architecture because the tiles do not
grow in complexity with technology; instead, the number of tiles on the chip grows. The
energy efficiency is improved by switching off tiles that are not used. Defective tiles
can be switched off and isolated, which makes the architecture fault-tolerant.

In a heterogeneous system algorithms run on the type of PE which performs the
required computation most efficiently. For example, some algorithms run more

 5

efficiently on bit-level reconfigurable PEs (e.g. pseudo random generators), some on
word-level reconfigurable PEs (e.g. FIR filter, FFT). Hence, the type of the PEs
building the system is chosen according to the needs of the application domain.

Most of the tiles in our system are domain specific PEs, designed to perform fast
and efficiently the DSP algorithms in the processing part of streaming applications.
Because the DSP algorithms are mostly compute intensive and run periodically, multi-
tasking is inappropriate. Hence, the domain specific PEs are single task processors. One
or a few tiles in the system are multi-tasking general purpose processors (GPP), to run
the control part of the applications and also system control tasks.

Each PE has its own local code and data memory. This reduces the need to access
the shared global memories that can easily become a bottleneck in a streaming
multiprocessor architecture. Since the communications between the PE and the shared
global memory are reduced, the traffic and communication energy are reduced as well.

The number of tiles that will fit on a chip is estimated by comparing the maximal
chip size with the tile size. Assuming the maximal chip size for the current and the next

generation technologies is 26×22=572 mm2 [93]. For a tile size estimation we use the
area of the Montium tile processor [39, 40] – a domain specific processor for baseband
processing applications. The area of the Montium tile processor together with its local

memories (data and code) in 0.13µm technology is 2 mm2. Hence, more than 200 such
tiles will fit on a single chip. This number will increase exponentially with the coming
generations of semiconductor technologies. Therefore, it is not unrealistic to consider
arrays of hundreds of tiles [14].

1.3.3. Dynamic reconfiguration

In a tiled architecture, each tile is reconfigured independently; the tile is the natural
unit of partial reconfiguration. Unlike other state of the art systems, in our system the
reconfiguration is done at run-time. While some tiles are performing tasks, unused tiles
can be configured for new tasks. Therefore the system is dynamically reconfigurable.

Dynamic reconfiguration is essential to support the dynamically changing demands
of the application domain: the system operates in a constantly changing environment.
The user demands change (e.g., starting/terminating applications), the environmental
conditions change (e.g., available networks, wireless channel conditions) and the
available power budget also changes (decreasing battery budget or connected to the
mains). The set of running applications and tasks in the system adapts dynamically to
these changes.

The run-time reconfiguration modifies the system communication demands. For
example, a new data stream may be needed or some of the old streams may be
redirected or replaced. The NoC must be able to handle such dynamically changing
traffic conditions. Run-time changes in part of the traffic must be possible without
disturbing the rest of the traffic. The network reconfiguration time must be short enough
to enable adequate system reaction time and reconfiguration must be transparent to the
user.

1.3.4. Centralised control

Tiles are configured by configuration messages. Generally, configuration messages
may come from any tile or from outside the system. However, during normal system
operation, configuration messages are generated only by the one tile responsible for

 6

system run-time configuration, control and management. This tile acts as a central
authority that manages the other tiles by configuring them. Therefore our system
operates with centralised control. Because the central tile performs mainly control
oriented tasks, it is appropriate for this tile to be a GPP.

The centralised control has the following advantages for our system. As a
consequence of the centralized control, most of the tiles can be simple since they are not
required to perform distributed control functions; all control functions are performed by
the central tile. The central tile has a global view of the system and can distribute the
system resources more efficiently. The central view facilitates also the QoS support and
the system performance optimisation.

Drawbacks attributed to centralised control are its poor scalability and unreliability.
However, these disadvantages can be avoided to some extent by adding more GPP tiles
to the system. As the system size grows, the central GPP tile can delegate some tasks to
subordinate GPPs and avoid scalability problems. In case of a malfunctioning central
GPP, its functions can be taken over by another GPP with similar capabilities. However,
making the centralized control in our system reliable is beyond the scope of this thesis.

The central tile starts and stops applications at run-time. To start an application, the
central authority allocates and configures tiles for the application tasks. The procedure
of tile allocation is referred to as application mapping. For the purpose of mapping, the
applications are partitioned into tasks with appropriate granularity to run on tiles; this
happens at compile time. At run-time, the mapping algorithm chooses the exact tiles
where the task will run. By mapping communicating tasks on neighbouring tiles, the
communication distances are reduced (or the communication locality is improved). As a
result, the traffic and the communication energy are reduced.

A mapped application task communicates only with some of the other tasks of the
same application and eventually with the central authority. Thus, it is not expected that a
tile addresses other tiles randomly. Therefore, during its operation a tile needs to know
only a small, fixed set of addresses of the other tiles.

The configuration messages also contribute to the system traffic. However, they
form a small part of it. The configuration message size depends on the configuration
space of the tile being configured. For domain specific tiles this space is usually several
KBytes. For example, the total configuration space of the Montium tile is 2.6 KByte
[39]. Tile configuration is required when an application is started. For applications such
as wireless channels, video/audio players, etc., this may happen every several seconds
or several hours. To estimate the amount of configuration traffic in the system, we use
the HiperLAN/2 receiver again [67]. Assume that a new receiver is instantiated as an
application every second (this is a strong overestimation, since it is not realistic that a
new wireless channel is required every second). A HiperLAN/2 receiver is mapped on
three Montium tiles [67]. To configure the new tiles, configuration messages of size at
most 2.6 KByte are generated every second and these messages generate traffic of 20.8
Kbit/s per tile. Compared to the per-tile throughput of the main data stream which is
512 Mbit/s, the configuration traffic is estimated to be less than 0.005% of the total
traffic. Thus, even with a strong overestimation, the fraction of configuration traffic in
the system is negligibly small. Whether configuration messages require communication
guarantees depends on whether the start-up time or adaptation time of an application is
critical.

 7

1.4. Semiconductor technology trends

The design of a large SoC like the one we consider in this thesis faces problems
related to the global on-chip wiring. These problems are a result of the reduced
dimensions in the new generation of semiconductor technology. The reduced
dimensions change the electrical parameters of wires and cause two problems referred
to as the signal integrity problem and the clock distribution problem. Another problem,
referred to as the productivity gap, relates to the need for a more productive design
methodology in order to cope with the increasing design complexity. We discuss each
of these problems in the subsequent sections.

1.4.1. Signal integrity problem

The basic components of a digital CMOS IC are gates and wires. The gates do
signal switching while the wires transport signals. Every silicon technology generation
reduces the dimensions of gates and wires and so changes the physical and thus their the
electrical properties. While in the previous technology generations these changes did not
lead to serious complications, now they are recognised as a problem that requires urgent
attention [42, 55, 76].

As the base fabrication technology shrinks to smaller dimensions, the gates become
smaller and the wires become thinner and, as a result, the signal delay of gates and wires
changes. Under scaling, the delay through a fixed-length wire (which is inversely
proportional to the signal propagation velocity) increases, while the gate delay
decreases. Thus, an increasing disparity between wire and gate delay is observed,
assuming constant wire length.

Typically, IC designs consist of a number of modules. As designs scale to the newer
technologies, modules get smaller, the wires in the modules get shorter and the relative
change in the delay of wires to the delay of gates in a module is modest. However, a
chip can accommodate more and more modules, which are also interconnected by wires.
These wires communicate signals across the entire chip and in contrast with the local
module wires their length does not scale with technology. They stay long and their
delay scales upwards relative to the gate delay. Thus, we must distinguish two types of
wires, the signal delay of which is influenced differently by the scaling. We refer to
these two types as local and global wires.

If no special measures are taken, it might be expected that future ICs will consist of
fast high-performance modules, interconnected by slow global wires. Thus the global
wires will become a system bottleneck and will degrade the overall IC performance.
Researchers agree that a solution to the problem can be provided by a new chip design
methodology [42]. In the current methodology the chip wiring is automatically
generated by the design tools and the designers cannot control the wires in the early
design stages. The automatically generated wires are not structured and their electrical
parameters, such as parasitic capacitance and crosstalk to adjacent wires, are difficult to
predict early in the design process. This does not allow for optimisation of the global
wires in early design stages and leads to many time consuming iterations in the late
design stages.

Instead of assuming the wiring as something hidden and automatically generated by
tools, researchers agree that explicit structures that handle the inter-module

communications must be included in the system architecture. Such an approach will
make global wires structured and controllable; it will make the global communication

 8

latencies explicit and predictable in an earlier design stage and will allow particular
measures to be taken for their improvement.

1.4.2. Clock distribution problem

The changes in the electrical properties of wires also affect the on-chip global clock
distribution. It is getting more and more expensive in terms of energy to distribute a
precise clock signal to all modules on the chip. For example, in complex high
performance chips, clock distribution may cost near 50% of the total energy
consumption [79]. Hence, chip-wide synchronous operation is becoming expensive. The
envisioned solution is the Globally Asynchronous Locally Synchronous (GALS)
systems design framework [19, 58]. A GALS system is a system consisting of many
synchronous modules, which, however, operate at their own local clock frequencies. No
global clock distribution is required and the system should be considered globally
asynchronous. The synchronous modules are often referred to as clock islands.

Compared to a fully synchronous design, GALS can reduce the clock distribution
power by 70% [38]. Another advantage of GALS is that the system modules are still
synchronous and can be designed using standard tools and methodology. To complete
the framework, asynchronous communication techniques for transporting data between
the islands are required.

1.4.3. Productivity gap

As the integration level increases, the chip complexity grows. However, the chip
complexity growth rate is about two times higher than the design productivity growth
rate [46]. This means that the system design time will increase exponentially if the
current design methodology and tools are not replaced by more productive ones. A
complex design now can easily include 20-million logic gates. If such a design is started
from scratch, it could easily take 200 engineers three to five years to architect, design,
verify and build [82]. At the same time a common wisdom is that the product design
cycle needs to be approximately one year to be competitive in the market.

The disparity between the complexity and the productivity growth rates is usually
referred to as productivity gap. To narrow this gap, more productive methodologies are
needed. We can already observe that driven by this need the design methodology
changes. Instead of designing systems from scratch, currently more and more systems
are built from existing modules (re-use), e.g. CPUs from ARM and MIPS, common I/O
blocks such as Ethernet MAC, USB, PCI, etc. It is expected that future systems will
consist mainly of pre-designed standard IP (Intellectual Property) modules, adding only
a few proprietary modules. Hence, future system design will consist mainly of
integration of pre-existing IP modules. These systems will need an integration
technology that facilitates modularity and IP interoperability. Adding, removing or
changing an IP module should be possible without major disturbances of the rest of the
design. This can be achieved by using standard global on-chip communication
architecture offering a standard interface to the IPs. By reusing the communication
architecture over many designs, design time and cost are saved. Since the
communication architecture is optimised and with a fixed layout, time consuming
iterations for optimising the global communications are avoided when a new SoC is
designed or when an old is modified by replacing or adding modules.

 9

1.4.4. Directions

For continued benefit of the advances in silicon technology, all three design
problems addressed above must be solved. We believe that the three problems can be
solved in principle by an explicitly defined global communication infrastructure that
structures and shortens the global wires and facilitates modular design.

Current complex on-chip systems are also modular, but most often the modules are
interconnected by an on-chip bus. The bus is a communication solution inherited from
the design of large board- or rack-systems in the 1990’s. It has been adapted to the SoC
specifics and currently several widely adopted on-chip bus specifications are available
[89-91, 95].

While the bus facilitates modularity by defining a standard interface, it has major
disadvantages. Firstly, a bus does not structure the global wires and does not keep them
short. Bus wires may span the entire chip area and to meet constraints like area and
speed the bus layout has to be customised [78]. Long wires also make buses inefficient
from an energy point of view [9]. Secondly, a bus offers poor scalability. Increasing the
number of modules on-chip only increases the communication demands, but the bus
bandwidth stays the same. Therefore, as the systems grow in size with the technology,
the bus will become a system bottleneck because of its limited bandwidth.

The current solution for the bus performance and scalability problems is bus
partitioning. A bus is partitioned into several busses (most often two), connected trough
bridges. A hierarchy may be introduced between the busses, e.g. a high-performance
system bus and a low-performance peripheral bus. While the partitioned bus solution is
satisfactory for the current system sizes (up to tenths of IPs) it does not help for
structuring the chip layout.

Although the bus is the common communication solution in the current SoC, its
future application is questionable because a bus is unable to solve the design problems
foreseen for the future semiconductor technology. Therefore a communication paradigm
shift is required. A new SoC communication solution that addresses the design
problems is needed.

We believe that an appropriate solution can be found in the communication concept
used in the 90’s for the interconnection of processor arrays in multi-computers. In
multi-computers many processors are interconnected by a communication network. It is
proposed to use such a network to interconnect the modules in a SoC [25]. This concept
has become popular as a Network-on-Chip (NoC). The cost of applying an
interconnection network on-chip is the area overhead due to new system components
(routers) needed to support the network. The system organisation must also take into
account the network and may incur additional network exploitation costs in terms of
configuration and time overhead.

1.5. Objectives

The arguments presented suggest that NoC structures have the potential to solve the
key design problems in the future semiconductor technologies and motivate us to use a
NoC as an on-chip communication infrastructure in our SoC design. However, there are
still many open questions which have to be answered in order to show that the NoC
concept is feasible. For example, to design a NoC, one has to decide which particular
network techniques to employ. It is not known what performance can be achieved by a
NoC and whether it can satisfy the system demands. It is not known whether the costs

 10

of employing the NoC are acceptable. It is still not clear whether the network can
support the overall system operation requirements.

These are the questions we address in this thesis. Our objective is to define an NoC
architecture, evaluate its performance and estimate its implementation cost. Therefore
we define the following research questions:

1. What network techniques are appropriate to minimize the network overhead

while maintaining satisfactory performance?

This question addresses the design choices that have to be made. The design

objective is to achieve a network performance that satisfies the system demands. We
consider the typical network performance metrics throughput and latency, but also the
services the NoC can provide e.g., guaranteed services or best effort services. The
design constraint is given by the maximum acceptable network overhead. We consider
two types of overhead – implementation and exploitation overhead. The implementation
overhead comprises all the costs due to the physical implementation of the network;
these are the area cost and the static energy cost. The exploitation overhead comprises
all the costs for network support and exploitation, e.g. network configuration costs,
costs for sending data over the network (dynamic energy cost and data overhead), etc.

The design choices are made on the basis of comparison between the relative cost
and performance of the considered techniques and not the actual implementation
performance and cost. For example, latencies are compared in terms of clock cycles but
it is not taken into account what the maximal achievable operating frequencies are.
Therefore, to evaluate the network we have to find its actual cost and performance and
that leads to our second question:

2. What is the overhead and the performance of a NoC architecture?

This question addresses the evaluation of the implemented network and its answer

requires estimation of all the costs the NoC employment entails. To estimate the
exploitation overhead it is necessary to know exactly how the network is used by the
system. Hence our third question is:

3. What is the optimal use of the NoC?

This question addresses the overall system operation and all the interactions

between the NoC and the system. It is a difficult question to be answered in detail since
it involves many aspects of the system operation which are beyond the scope of the
thesis. However, we propose a system organization scenario that supports the NoC
communication concept as much as possible.

In general, this thesis presents a proof of concept of the NoC idea. We define and

evaluate an instance of a NoC architecture for our tiled Chameleon SoC. The NoC is not
a general purpose one but aimed to support the streaming DSP applications in our
system.

 11

1.6. Contributions

The scope of our work is given by the Chameleon system [39, 71]. In this scope we
provide a feasible NoC solution. The specific contributions of this thesis are:

1. We propose a NoC architecture for a run-time reconfigurable

multiprocessor SoC that supports streaming DSP applications. To the best
of our knowledge, this is the first NoC targeted at a run-time
reconfigurable SoC.

2. We propose an architecture of a virtual channel router, which in contrast to

conventional architectures is able to provide predictable communication
services and has a lower implementation area cost than conventional
architectures.

3. The predictable performance of our network simplifies the mapping of

streaming DSP applications to our multiprocessor system. System
reconfiguration can be done in linear time avoiding the NP-complete
solutions common for statically scheduled real-time systems. Thanks to
this linearity, system reconfiguration can be done at run-time.

1.7. Structure of the thesis and related publications

The rest of the thesis is organized as follows. In Chapter 2, we review
communication network techniques and select those suitable for our NoC
implementation. We choose to use a virtual channel network. In this chapter we also
discuss some recent work on NoC design.

In Chapter 3, we discuss the possible architectural solutions for a virtual channel
router. We study the influence of the architecture on the router performance and identify
those architectures that can provide predictable communication services. Finally, we
propose an approach for providing guaranteed communication services at network level.
Major parts of this chapter have been presented at the IEEE International Symposium
on VLSI 2006 [6].

Implementation details about the selected router architecture are presented in
Chapter 4, in which we propose an implementation that simplifies the design and
reduces the overall router area. Implementation results are also presented there. Major
parts of this chapter have been presented at the IEEE International System-on-Chip
Conference 2004 [5] and at the EUROMICRO Symposium on Digital System Design
2004 [1]

In Chapter 5, the proposed approach for providing guaranteed services is evaluated
with a model of the expected traffic in the system. Also the overhead for applying the
approach is estimated. Major parts of this chapter have been presented at the
International Workshop on Applied and Reconfigurable Computing 2006 [7].

Chapter 6 shows how performance guarantees are given to streaming DSP
applications. Major parts of this chapter have been presented at the EUROMICRO
conference on Digital System Design 2005 [4] and at the Communicating Process
Architectures Conference 2005 [8].

Chapter 7 gives conclusions and recommendations.

 12

 13

Chapter 2

Background and related work*

Multiprocessor networks have been studied for more than

two decades and a solid foundation of design techniques is

available. In this chapter we review the main techniques for

interconnection networks. We also present some recent

network-on-chip solutions and discuss the techniques they

employ.

2.1. Introduction

The objective of this thesis is to define a Network-on-Chip (NoC) architecture for
the tiled multiprocessor System-on-Chip (SoC), described in Chapter 1. The task of the
NoC is to interconnect a set of processing tiles, allowing them to exchange data and to
operate as an integral system. Building networks of processors is not a new research
topic. Such networks have been investigated for more than two decades in the domain
of parallel computing and are known as Multiprocessor networks (MP networks). As a
result, a solid foundation of design techniques for MP networks is available in the
literature. Since by nature on-chip networks are MP networks, MP network techniques
can be adopted for building NoC architectures. However, on-chip networks have their
specifics, which are result of the different realization technology and the different
requirements of the multiprocessor system and the applications running on the system.
These specifics must be taken into account when adopting MP network techniques.

This chapter consists of three parts. In the first part we discuss the NoC specifics in
comparison with MP networks. In the second part we give an overview of the general
interconnection network techniques, focusing on the techniques used for building MP
networks. We discuss the techniques in the context of our tiled multiprocessor system.
Our objective is to identify those of them which are most suitable for use, directly or
after modification, in our NoC and also to identify potential gaps which require
development of new specific techniques. We also introduce terminology and notation
used in the other chapters. We adopt the terminology and notation used by Dally and
Towles [27].

The third part of this chapter is devoted to existing NoC solutions. We discuss only
the most mature solutions and techniques that are relevant to this thesis. The solutions
are compared mostly qualitatively; the quantitative comparisons are restricted to chip
area and clock frequency (when this information is available). We restrict our
quantitative comparisons, because often NoC solutions are targeted at different systems,
address different traffic types and pursue different goals, or detailed information about

* Major parts of this chapter have been presented at the PROGRESS Embedded Systems Symposium [2].

 14

the system is not available. Therefore, detailed quantitative comparison cannot be made
fairly.

2.2. NoC characteristics

To establish criteria on which we can assess the available MP network techniques,
we first define the specifics of the NoC. The first specific criterion that distinguishes a
NoC from MP networks is the implementation technology. While MP networks are used
for inter-chip or inter-board communications, the NoC is entirely built on the chip.
Inter-chip communication requires signals to go off chip on pins. Since the number of
pins available on the chip is limited to less than 1000, the number of inter-chip signals
to be used for communication is also limited. In contrast, on-chip networks do not have
this limitation because they are built entirely on the chip and use only on-chip wiring
resources. The number of the on-chip wires available for communication signals can go
far beyond the pin limitation of the inter-chip networks. For example, in 130 nm
technology [92], launched in 2002, the minimum global wiring pitch is 565 nm, so there
can be up to 1770 wires crossing an edge of length 1 mm on each metal layer. In 70 nm
technology [93], projected in 2006, the minimum global wiring pitch is 250 nm, hence
there can be up to 4000 wires crossing an edge of length 1 mm on each metal layer.
Hence, on-chip networks have extensive wiring resources at their disposal compared to
the traditional MP networks.

The main limitation to which the on-chip network has to conform is the chip area.
While in the MP networks each router (the building block of a network) is placed on a
separate chip [26, 74] and utilizes the entire chip area, all routers of an on-chip network
are placed on a single chip. The NoC is just part of the implemented SoC and utilizes
only part of the available chip area. The area utilized by the NoC routers should be
reasonably small compared to the area used by the computational resources. The
computational resources in our SoC are the processing tiles. Each tile is accompanied by
a network router. As an estimate, the area of the processing tile proposed by Heysters
[39] is 2 mm2 in 130 nm technology. If for a maximal acceptable size for a router we
assume 1/10 of the tile area, then the router area should be less than 0.2 mm2.

Another NoC specific is the requirement for a simple and regular layout. The wires
used for network signalling form a large part of the global on-chip wiring. To cope with
the signal integrity problem, described in the introduction chapter, the global wires must
be short and structured. By employing a network topology that results in a simple and
regular layout, a NoC has the potential to provide wiring with well controlled
parameters, predictable at an early design stage and easy to optimize. Thus, the regular
layout helps in coping with the signal integrity problem.

Since the integration level provided by new semiconductor technologies increases
exponentially following Moore’s law, more and more tiles will fit on a single chip.
Thus, the network size is also expected to grow. To provide for an easy transition
between technology generations, the network must be scalable, such that it can be
extended with a minimal cost and redesign efforts.

At a functional level the major difference between MP networks and the NoC is the
demand for quality-of-service (QoS). In traditional multiprocessor systems, like
supercomputers, the focus has been mostly on high performance, while QoS has not
been an active research topic. For that reason there is a lack of MP network techniques
for providing QoS. However, recently multiprocessor systems have appeared in

 15

consumer products, such as mobile phones, TV/video sets, etc. [94]. Many program
applications in these devices require QoS, and that raises the demand for QoS support.

In summary, the characteristics that distinguish the on-chip networks from the
traditional MP networks are:

- large amount of available wiring resources
- area limitation for the router size
- need for regularity of the network layout
- need for scalability
- demand for QoS

2.3. Interconnection networks

In this section we give an overview of general techniques for the design of
interconnection networks where we focus mainly on MP network techniques. The
techniques are discussed within the perspective of the NoC context, in order to assess
how appropriate they are for a NoC implementation.

According to the definition given Dally and Towles [27], an interconnection
network is a programmable system that transports data between terminals. Here
terminal refers to a general source/sink of data that requires communication services.
Such a system is shown in Figure 2.1. The figure shows six terminals, T1 through T6,
connected to the network. When a terminal wishes to communicate data to another
terminal, it sends a message containing the data over the network. The network delivers
the message to the destination terminal. The network is programmable in the sense that
it can make different connections at different points in time. The network in the figure
may deliver a message from T3 to T5 in one cycle and use the same resources to deliver
a message from T3 to T1 in the next cycle. The network is a system because it is
composed of many components: buffers, channels, switches and control that work
together to deliver data.

Interconnection network

T1 T2 T3 T4 T5 T6

Figure 2.1: Functional view of an interconnection network

Networks meeting this broad definition may occur on many scales. However, here
we restrict our attention only to small scale networks and MP networks, relevant to our
SoC architecture. These networks have tens to hundreds of terminals positioned close to
each other (on a board or on a chip). The terminals are processors, memories or other
system modules.

A network is built out of switching elements interconnected by physical channels,
also called links. A switching element has a number of input and output ports. Its main
function is to forward data by establishing non-conflicting connections between input
and output ports. Depending on the type of network the switching elements are referred
to either as switches or routers.

 16

The physical channels are sets of wires interconnecting the ports of neighbouring
routers and transporting signals between them. The physical channels form the medium
that transports information in the network. The switching elements allow physical
channels to be time-shared between data from different source and destination pairs. In
some networks sharing may cause data blocking. To prevent loss of blocked data, the
switching elements may provide storage space for temporal data buffering. The buffers
may also be shared, since at different times they may store data from different sources.
Besides the physical channels, buffers are the other important network resource.

2.3.1. Direct and indirect networks

A network where every switching element is directly connected to a terminal is
called a direct network. An example of a direct network is given in Figure 2.2.a. The
circles there represent pairs of terminals and switching elements, often called nodes. In
contrast, a network where not every switching element is connected to a terminal is
called an indirect network. An example of an indirect network is given in Figure 2.2.b.
The circles represent terminal nodes and the squares represent switching elements. In
indirect networks there is a natural separation between the terminals and the switching
elements, while in direct networks the separation is a matter of preference.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a) A 3-ary 2-cube b) A 2-ary 3-fly

Figure 2.2: An 8-node mesh network and an 8-node butterfly network as example of
direct and indirect networks

In the topology of the tiled multiprocessor SoC architecture considered in this thesis
(see Chapter 1), the tiles that construct the system are arranged into a two-dimensional
array on the plane of the chip. Each tile has to be connected to the on-chip network and
will play the role of a terminal. Furthermore, the network should provide simple and
regular global on-chip wiring. The simplest and most natural way to satisfy these
requirements is to add a switching element to each tile and to interconnect the
neighbouring switching elements in a grid. This will result in a direct network topology.
Therefore, we focus only on direct network topologies.

2.3.2. Performance of interconnection networks

The basic metrics of the network performance are throughput and latency.
Throughput is the rate at which data is delivered by the network, in [bit/s]. Throughput,
also referred to as accepted traffic, should be clearly distinguished from the offered

traffic. The network cannot always accept all the traffic generated by the data sources.

 17

The ideal throughput, θideal, is the theoretical bound on the network throughput
assuming that the traffic is perfectly balanced over the physical channels. However, this
bound is rarely, if ever achieved because the network techniques used in practice cannot
provide full network utilization, e.g. the routing cannot perfectly balance the traffic over
the channels, the flow control results in idle channels because of resource dependencies,

etc. Hence, the network saturates at throughput θs, θs<θideal, referred to as saturation

throughput.
Latency is the time required for a data item to traverse the network, from the time

the first bit of data arrives at the input port of the network to the time the last bit is
received at the output port of the network. Often latency is estimated under a zero-load
assumption; that is, data never contends for network resources. Thus zero-load latency,
T0, gives a lower bound on the data latency in the network. Figure 2.3 shows an
example graph depicting a typical dependency between the traffic load offered to the
network and the data latency.

s ideal

T0

Offered traffic [bit/s]

Figure 2.3: Typical dependency between offered traffic and data latency in a network

2.3.3. Network topologies

The physical structure of a network can be represented as a graph, called a network

graph. The vertices in the network graph represent switching elements and the edges
represent physical channels. The arrangement of the switching elements and channels is
represented by the topology of the network graph, called the network topology.

Definitions

Since a network topology is represented through graphs, graph terminology is
adopted when reasoning about networks. An interconnection network is formally
defined as a directed graph I=(N,C), where N and C are the set of nodes and the set of
channels in the graph. The degree of a network node is the number of channels
connected to the node. When all the nodes in the network have the same degree, the
network is called degree regular.

A path in the network is a sequence of nodes and channels. More formally, a path is

a sequence <n0, n1, …nl> of nodes, such that ni∈N for i∈[0..l], and edges (ni, ni+1)∈C

for i∈[0..l-1]. Sometimes it is more convenient to express the path in terms of channels.

 18

The path is then a sequence <c0, c1, …cl-1> of channels, such that ci∈C for i∈[0..l-1] and

destination(ci-1)=source(ci) for i∈[1..l-1]. The functions source(ci) and destination(ci)
give the source node and the destination node of the channel ci.

The length of a path equals the number of channels (ni, ni+1) traversed by the path.
The number of traversed channels is also referred to as the hop count; a hop is the unit
in which the network distances are usually given. Paths are also referred to as routes. A
path between two nodes s and d is a network path <n0, n1, …nl> such that n0=s and nl=d.
The distance between two nodes s and d is the length of the shortest path between s and
d. The maximal distance D over all pairs of nodes in the network is called the diameter
of the network – a characteristic often used for assessment and comparison of network
topologies.

A cut of a network, C(N1, N2), is a set of channels that partitions the set of all nodes
N into two disjoint sets, N1 and N2. Each element of C(N1, N2) is a channel with a source
in N1 and destination in N2 or vice versa. The number of the channels in the cut is |C(N1,
N2)| and the total bandwidth of the cut is:

(2.1)
()
∑

∈

=
21 ,

21),(
NNCc

cbNNB ,

where bc is the bandwidth of channel c.
A bisection of a network is a cut that partitions the network nearly in half, such that

|N2|≤|N1|≤|N2|+1. The channel bisection, BC, of a network is the minimum channel count
over all bisections of the network:

(2.2) ()21,min NNCB
bisections

C = .

The bisection bandwidth, BB, of a network is the minimum bandwidth over all
bisections of the network:

(2.3) ()21,min NNBB
bisections

B = .

For networks with uniform channel bandwidth bc=b for every c∈C, the bisection
bandwidth is BB=bBC. For simplicity, in the following sections we refer to the channel
bisection only as bisection unless explicitly stated otherwise.

A topology characteristic related to the bisection is the network connectivity. A
network is called k-connected when between any pair of nodes there exist at least k
paths that do not share other nodes than the source and the destination (internally vertex
disjoint paths). The maximal k for the network is called the connectivity of the network.
Since the connectivity corresponds to the path diversity between the nodes, it is used as
a measure of the fault-tolerance of the network. On the other hand, it can also be used as
a network performance measure related to the bisection.

Requirements

The selection of the network topology will be driven by the following criteria:
- Small and fixed degree. The degree of a node determines the number of ports

of the corresponding switching element. Hence, node degree influences the
switching element complexity and area cost. A small degree reduces the cost.
Degree regularity allows for uniform design of the switching elements.

 19

- Simple and uniform layout. Whatever the topology, the network is embedded
in the plane of the chip. The layout of the embedded network defines the
global on-chip wiring, which has to be as simple and uniform as possible in
order to lessen the signal integrity problem.

- Small diameter. Networks with a smaller diameter have shorter distances and
therefore lower communication latency.

- Simple routing. The network topology influences the algorithm used for
searching routes in the network. Regularity and simplicity of the network
topology can simplify the routing algorithm

- Scalability. Following Moore’s law, the number of system components on-
chip is expected to increase exponentially with the technology generations in
the next 10 years [93]. Thus, the number of nodes in the on-chip network will
increase. To provide easy transition between technology generations, the
topology should support extension (an increase in the number of nodes) at
minimal cost and redesign efforts.

- Fault tolerance. Defects in the manufacturing process may cause
malfunctioning or failure of network components (channels or routers) in
newly produced chips. To reduce the impact of such defects on the production
yield, it is desirable that in the presence of a reasonably small number of
faulty components, the network is still operable. During its operation, the
network should be able to avoid the faulty components by using alternative
paths. The presence of alternative paths is indicated by the connectivity of the
network; hence, topologies with higher connectivity are preferable.

Having motivated our requirements for a topology, we continue by giving an
overview of direct network topologies most commonly used in MP networks.

Tree topologies

As the name suggests, the tree topology interconnects the network nodes in the
form of a tree. Each node (except the root) has one ancestor and k descendants. A tree in
which every node, except the leaves, has exactly k descendants is a k-ary tree. Tree
networks have a small diameter, O(logkN), N being the number of nodes in the network,
but their bisection and connectivity are small, only 1; there is only one path available
between any pair of nodes. Therefore, the network is not fault-tolerant. To improve the
fault tolerance, ringed trees have been proposed [29]. As shown in Figure 2.4.a, a
ringed tree connects the nodes of each stage of the tree in a ring.

b b b bb b b b

2b 2b 2b2b

4b 4b

a) A Ringed tree b) A Fat tree

Figure 2.4: Tree topologies

 20

The small bisection of the trees also causes performance problems. The nearer to
the root a channel is, the more paths use it. Therefore, the channels nearer to the root
have a higher load and become a bottleneck. To overcome this problem, fat-trees have
been proposed [51]. In fat-trees, channels that are nearer to the root have higher
bandwidth. For example, in the fat-tree shown in Figure 2.4.b, the channels connecting
the leaves of the tree have bandwidth b, the channels connecting the next stage have
bandwidth 2b, and so on. While fat-trees overcome the tree performance problem, they
introduce irregularity in the physical design of the switching elements and do not
improve the fault-tolerance.

Star topologies

A star graph [11] has n! nodes labelled by permutations of n different symbols.
Each node in the graph is connected to n-1 other nodes, with labels that are obtained
from the current node label by interchanging the first symbol and one of the other
symbols. An example of a four-star graph (n=4) is given in Figure 2.5. The nodes are
labelled by permutations of the symbols {1, 2, 3, 4}. Labels are shown only for one
node and its three neighbours. The border edges labelled by the same letter are
connected, but for clarity of representation the connecting edges are not shown.

The degree of an n-star graph is n-1 and the diameter is 3(n-1)/2. Although, the
degree and the diameter of star graph are lower than the degree and the diameter of
mesh and torus network (discussed below) of similar sizes, the routing is more
complicated and the node degree depends on the network size.

Figure 2.5: An example of star graph

Torus and mesh topologies

Among the direct network topologies, torus and mesh networks are the most
popular, well studied and often used for practical implementations. Torus networks are
characterised by their radix k and the number of dimensions n. An n-dimensional radix-
k torus, also referred to as a k-ary n-cube, arranges N=k

n nodes in a n-dimensional cube
with k nodes in each dimension. Each node is assigned an n-digit radix-k address {an-1,
… a0}. The ith digit in the address, ai, represents the node position in the ith dimension.
A node is connected by a pair of channels (one in each direction) to all nodes with

 21

addresses that differ by ±1(mod k) in exactly one address digit. This requires 2 channels
in each dimension per node or 2n channels. Tori are degree regular, their diameter is

nk/2 hops and the bisection is 4N/k=4k
n-1. An example of a 4-ary 2-cube is given in

Figure 2.6.a. The long channels connecting the nodes on the opposite edges of the node
array are usually referred to as wraparound channels.

A mesh network is a torus network with wraparound channels removed. Each node

in a mesh connects to all nodes that differ by ±1 in exactly one address digit. Figure
2.6.b gives an example of a 4-ary 2-mesh. The mesh network has the same node degree,
but half the bisection channels of a torus with the same radix and dimension. The
bisection is 2N/k=2k

n-1, and the diameter is n(k-1) hops. Removing the wraparound
channels destroys the symmetry of the torus. This can cause load imbalance, as the
demand for the central channels can be significantly higher than for the edge channels.

Figure 2.6: Torus and mesh networks

A k-ary 1-cube is simply a ring of k nodes. The 2-ary n-cube networks form a
subclass of tori called hypercubes or binary cubes. An example of a 3-dimensional
hypercube is given in Figure 2.7.a. In a hypercube network every node is connected to n
other nodes. A hypercube keeps the hop count small with an increasing number of
nodes. However, increasing the number of nodes increases the number of dimensions n

and the node degree. For MP networks the higher degree may cause a packaging
problem. Figure 2.7.b presents a hypercube modification called cube-connected cycles
[65] for which the node degree remains 3, independently of the number of dimensions.
It is derived by replacing the n-degree nodes in the hypercube by a ring of n nodes.

Figure 2.7: Binary cube and cube-connected cycles

 22

Torus and mesh networks of low dimension are attractive for several reasons. The
regular topological arrangement is well matched with the two-dimensional arrangement
of the tiles on the chip. At low dimensions tori have uniformly short wires allowing
high speed operation without repeaters (the wraparound channels are an exception
which can be avoided by folding, discussed later). Logically minimal paths in tori are
almost always physically minimal as well. The wiring complexity and performance of
torus networks is studied by Dally [22]. The results show that low-dimensional
networks are advantageous compared to high-dimensional networks. In particular, with
up to 1024 nodes a 2-dimensional topology provides lower latency and higher
throughput than networks of higher dimensions with the same bisection. Networks of
many dimensions require more and longer wires than low-dimensional networks.

Besides performance, wire regularity is another major concern when choosing a
network topology. The network topology embedded in the plane of the chip determines
the structure of the global on-chip wiring. To solve the signal integrity problem,
discussed in the introduction chapter, the global on-chip wires must be as uniform and
simply structured as possible. Figure 2.8 compares the wiring of two cubes containing
the same number of nodes, but of different dimensions. Figure 2.8.a shows a 3-ary 4-
cube embedded in a plane. Although the required wiring is regular, it is complicated,
wires of different length are required and it would be practically difficult to keep it well
structured and optimised. On the other hand, the two dimensional cube shown in Figure
2.8.b has a simple wiring structure which is intuitive and easy to handle. Similar
observations can be made for meshes of low and high dimension. Thus, the performance
and wiring issues suggest that low-dimensional networks are advantageous for on-chip
implementation.

b) A 9-ary 2-cubea) A 3-ary 4-cube embedded in the plane

Figure 2.8: Wiring of cubes of different dimensions

 23

b) A folded torusa) A folded ring

Figure 2.9: Folding cubes in order to avoid wraparound channels

In two-dimensional cubes the wraparound channels may cause practical problems,
because they are long, require repeaters and are slower than the other channels. The
wraparound channels can be avoided by folding the network as shown in Figure 2.9.b
[22]. The folding keeps the graph intact but reshuffles its nodes in the plane such that
the wraparound channels are avoided at the expense of doubling the length of the other
channels. The idea of folding is illustrated in Figure 2.9.a by folding a ring.

2.3.4. Flow control

The terminals (the processing tiles in our system) exchange data in the form of
messages. The size of the messages is entirely determined by the applications and the
storage space available in the terminals. However, the unit of information that networks
work with is the packet. Packets encapsulate the transported data adding to it some
control information that is used by the network. The packet length may be fixed or
variable, which is determined by the network buffers capacity and the employed flow
control mechanism. When there is a limitation on the packet length, it may be necessary
to split the messages when injected in the network and later reassemble them on the
receiving side.

When transmitted over the network, packets are divided into smaller fixed size data
units called flow control digits, or flits. A flit is the smallest unit of information
recognized by the flow control. Finally, the unit of information that can be transferred
across a physical channel in a single cycle is called physical digit, or phit.

Flow control determines how network resources, such as channel bandwidth and
buffer capacity are allocated to packets traversing the network. A good flow control
method allocates these resources in an efficient manner so the network achieves a high
fraction of its ideal throughput and delivers packets with low latency. The flow control
can be classified as a buffered or bufferless flow control. Bufferless flow control is the
simplest form of flow control that uses no data buffering and simply acts to allocate a
channel bandwidth to competing packets. Buffered flow control is a more complicated
form of flow control that relies on buffering space in the routers, but it also more
efficient in distributing the network resources between packets. We describe each form
of flow control in the subsequent sections.

 24

Bufferless flow control

This type of flow control does not use buffer space for storing packets in the
routers. Therefore, bufferless flow control cannot hold the packets at a place, but has to
ensure they advance every cycle. When a packet cannot advance because the next
channel is occupied, the packet is either dropped or misrouted. Thus, we distinguish two
types of bufferless flow control: dropping flow control and misrouting flow control.

Dropping flow control drops from the network the packets that cannot advance
because of blocking. The dropped packets have to be retransmitted, which requires that:
i) a copy of the packet is stored at the sending terminal; ii) the flow control provides a
mechanism for notifying the sending terminal about the packet dropping. Two methods
are used for notifying the senders of the dropped packets. The first one relies on explicit
negative acknowledgement (explicit NACK), while the second simply uses a timeout.

A time-space diagram of dropping flow control with explicit NACK is given in
Figure 2.10. As before, the figure shows a 5-flit packet being sent along a 4-hop route.
The packet consists of a header (H), body (B) and a tail (T). The vertical axis shows the
forward (F) and the return (R) directions of the four channels (0-3) traversed by the
route. In the example, the first transmission of the packet is unable to allocate channel 3
and the packet is dropped. A NACK signal (N) is sent back to the sender to initiate a
retransmission. The NACK signal follows backwards the path reserved for the dropped
packet. The retransmission succeeds and the receiver sends an acknowledgement (A) to
the sender to notify that the packet has been received. With explicit NACK, flow control
channels are allocated to a packet by the packet header flit (H) and are released by the
ACK (A) or NACK (N) signals, which follow the return route reserved by the header
flit. The role of the tail (T) is to notify the receiver that the whole packet is successfully
received.

Figure 2.10: Time-space diagram of dropping flow control with explicit NACK

The second method for notifying a sender about packet dropping is by using a
timeout. A time-space diagram of a dropping flow control with timeout is given in
Figure 2.11. The figure shows a 5-flit packet being sent along a 4-hop route. The packet
fails to acquire channel 3 on the first transmission. In this case, however, a NACK is not
sent. Instead, the packet transmission continues across channels 0, 1 and 2. On each of
these channels the tail flit (T) deallocates the resources held by the packet as it leaves
the node. Thus channels 0, 1, and 2 become free during cycles 4, 5 and 6, respectively.
After a timeout elapses without the source having received an acknowledgement, the
source terminal retransmits the packet starting at cycle 12. This time the packet is
successfully received. The receiving terminal sends an acknowledgement which arrives
at the sender at cycle 23. Since no resources are reserved for the packet after the tail flit

 25

passes, the acknowledgement must compete for reverse channels and may it self be
dropped. In this case the packet will be retransmitted even though it was correctly
received the first time. The timeout length equals the time needed for the packet to be
received and the ACK to propagate back to the sender.

C
ha
nn
el

Figure 2.11: Time-space diagram of dropping flow control with timeout

Although simple, dropping flow control is inefficient because it uses bandwidth for
transmitting packets that might later be dropped.

Misrouting flow control sends blocked packets in alternative directions instead of
dropping them. In this case, there must be sufficient path diversity and an appropriate
routing mechanism to route the packet to its destination from this point. While
misrouting does not drop packets, it wastes bandwidth by sending packets in wrong
directions. In some cases, this leads to instability; the throughput of the network drops
after the offered traffic exceeds certain level. When misrouting is used, livelock is an
issue – if a packet is misrouted too often, it may never come close to its destination.

Circuit switching is a form of bufferless flow control which operates by first
allocating channels to form a circuit from source to destination and then sending one or
more packets along the circuit. When no further packets need to be sent, the circuit is
deallocated. The process involves four phases illustrated by the time-space diagram in
Figure 2.12. During the first phase a request (R) propagates from the source to the
destination and allocates channels. In a case of contention the request waits in the
switch until the requested channel is freed. In this example no contention is
encountered. After the circuit is allocated, an acknowledgement (A) is returned to the
source during the second phase. Once the acknowledgement is received, the circuit is
established and can handle an arbitrary number and size of data packets with no further
control. In the example, two 4-flit data packets are sent and each is followed by three
idle cycles. When no further data needs to be sent, a tail flit (T) is sent to deallocate the
channels used by the circuit.

Figure 2.12: Circuit switching

Circuit switching differs from dropping flow control in that if the request flit is
blocked, it is not dropped but held in place. The switches can store a request but not
data.

Circuit switching is simple to implement, but it also has weaknesses: high latency
and low throughput. At first, time is needed for establishing a circuit before sending a
packet. The period of time the circuit is reserved is longer than the time it is used.

 26

Time division multiplexing (TDM) is probably the simplest form of bufferless flow
control. It is suitable for small scale networks. All routers in the network must have a
common notion of time. In a TDM network all communications are statically scheduled.
Each router has a local timetable which contains a cyclic schedule for forwarding the
data from input ports to output ports. The schedules in all routers can be made conflict
free. They are computed centrally for the network and then loaded in the routers. Such a
network provides static communication channels with fixed throughput between source
and destination pairs. However, to change the current state of communication channels,
new schedules have to be computed and loaded in the routers.

Buffered flow control

Adding buffers to the network results in more efficient flow control, since the
buffer decouples the allocation of adjacent channels. Buffers provide a place to store the
packets while waiting for the allocation of the next channel, allowing the allocation to
be delayed.

To explain and compare different buffered flow control mechanisms, we use the
example situation illustrated in Figure 2.13. A packet traverses the network on a 4-hop
path. The packet starts from router 0, passes through routers 1 to 3 and ends in router 4.
Each router provides buffering space where the packet (or a part of the packet) can be
stored. The figure shows the situation where the packet (shown in gray) is traversing
from buffer 1 to buffer 2 on channel 1. All other details about the network and the
routers have been ommited; the figure shows only the channels and the buffers traversed
by the packet. We use this example in the following discussion on buffered flow control
mechanisms.

Figure 2.13: A packet traversing a network channel on its way through the network

Store-and-forward [27] is historically the first flow control mechanism used in the
first computer network – ARPANET [48]. With store-and-forward flow control, each
router along the path waits until a packet has been completely received (stored) and then
forwards the packet to the next router. Each router should provide enough storage space
to buffer at least one packet. The maximal packet length is limited by the provided
buffer space. Before a packet is forwarded, it must be allocated two resources: buffer
space in the next router and a physical channel.

Figure 2.14.a shows a time-space diagram of a store-and-forward flow control. The
diagram shows a 5-flit packet being forwarded over a 4-hop route with no contention.
At each step the entire packet is forwarded over one channel before proceeding to the
next channel, which increases the packet latency. In each node the packet spends time tr
until the resources are allocated for its forwarding, assuming these resources are free
and the packet does not wait. The time for forwarding the packet to the next node is L/b,
where L is the length of the packet and b is the bandwidth of the allocated channel.
Therefore, the zero-load latency of a packet travelling H hops route is:

(2.4) 







+=

b

L
tHT r0

 27

C
ha
nn

el

C
ha
nn

el

Figure 2.14: Time-space diagram showing a 5-flit packet sent over 4-hop route with no
congestions using different flow control mechanisms

Virtual cut-through flow control [47] overcomes the latency penalty of the store-
and-forward flow control by forwarding the packet as soon as the header is received,
without waiting for the entire packet to be received. Nevertheless, buffer space is
reserved for the entire packet, so that in a case of blocking the whole packet can be
buffered.

A time-space diagram of a virtual cut-through flow control is shown in Figure
2.14.b. By transmitting the packet as soon as possible, virtual cut-through flow control
reduces the packet latency to

(2.5)
b

L
HtT r +=0

Both, store-and-forward and virtual cut-through flow control require large buffers.
The buffer must be large enough to store at least one packet and the size of the packets
is limited by the buffer space.

Wormhole flow control [68] minimizes the required buffer space by allocating
buffers in units of flits instead of in units of packets. Like virtual cut-through it starts
forwarding the packet as soon as its header is received, but buffer space is allocated
only for several flits instead of for the entire packet. In the absence of congestion,
wormhole and virtual cut-through perform in the same way. The time-space diagram for
wormhole is the same as for virtual cut-through given in Figure 2.14.b and the zero-load
latency of a wormhole packet is given by (2.5). The difference in the performance of
both flow control mechanisms is observed when congestions occur. While in a virtual
cut-through network the whole blocked packet is buffered in a single router and blocks
only one input channel, in a wormhole network a router can buffer only part of the
packet. The body of the blocked packet spreads over multiple routers along the path
occupying one channel per router. Thus, in a wormhole network a blocked packet
occupies multiple channels along its path, which results in a lower saturation throughput
than virtual cut-through.

To reduce the effect of blocking, Po-Chi et al. [43] propose a scheme in which the
blocked packets are dropped after a certain timeout expires and later retransmitted. The
timeout period is calculated as a function of the packet retransmission cost and the cost
of the performance penalties due to the blocking. The costs are functions of the current
state of the network and their calculation may lead to an expensive implementation.

The advantage of wormhole flow control is that the required buffer space is reduced
from the size of the packet to the size of only a few flits. This is of importance for the
area constrained network-on-chip implementation, because buffers are the major area
consuming components in the routers. Furthermore, wormhole flow control decouples
the packet length from the buffer size. In a wormhole network we can have packets of

 28

virtually any length. Thus, the procedure of message splitting and reassembling is
avoided.

Virtual-channel flow control [21] improves network saturation throughput
compared to wormhole flow control, while still keeping the required buffer space small
and the packet length independent of the buffer size. Virtual channels (VCs) are
logically independent channels that share the same physical channel. The packets are
forwarded in the network over the virtual channels. When a packet is blocked, it blocks
only the virtual channel it uses over a certain physical channel, but the other virtual
channels can still use the physical channel. A physical channel is blocked only when all
its virtual channels are blocked, the probability of which is lower than the packet
blocking probability of wormhole flow control. Thus, the virtual channels keep the
physical channels well utilised and the network throughput high. In a virtual channel
network, the zero-load latency can be expressed by (2.5), but the term accounting for
the serialization latency, L/b, must be adapted to take into account the sharing policy of
the physical channels. The VCs do not use the full bandwidth b of the physical channel,
but only a fraction of it, depending on the channel sharing policy and the occupation of
the other VCs on the same physical channel.

The benefits of the virtual-channel flow control come at the expense of a more
complicated control. Virtual channels introduce an additional stage of arbitration and
allocation in the routers. While the previous flow control methods allocate to packets
only physical channels, the virtual-channel flow control first allocates a virtual channel
and then allocates bandwidth for the virtual channel.

The Flit-reservation flow control [61] addresses performance penalties in wormhole
networks which are caused by specifics in the hardware implementation as follows.
While wormhole flow control reduces the communication latency, the idealized router
model can differ significantly from a hardware implementation. Typically, a router
implementation is pipelined – in the router a packet has to pass through several pipeline
stages till resources are allocated to it. Thus, the pipelining unnecessarily increases the
packet latency. The idea of the flit-reservation flow control is to hide the latency for
resource allocation by sending in advance control information to the routers about the
arriving packets. A router then can allocate resources for a packet before the packet has
arrived. The control information is separated from the data and sent on a separate faster
control network, where the control flits race ahead of the data flits to reserve network
resources. As the data flits arrive, they have already been allocated resources and can
proceed with less latency overhead.

Table 2.1: Buffered flow control techniques
‘+’ = advantage, ‘-‘ = disadvantage;

Flow control Buffer size Zero-load

latency

Saturation

throughput

Independent

packet/buf size

Control

complexity

Store-and -forward - - + No +

Virtual cut-through - + + No +

Wormhole + + - Yes +

Virtual channels + + + Yes -

The small implementation area is one of the constraints that on-chip networks have
to meet. As pointed out in [34] and as we shall see in Chapter 4, where router
implementation issues are discussed, buffers are one of the main area consuming
components in the on-chip routers. Therefore, minimization of the buffer size is crucial.

 29

This makes bufferless flow control an attractive solution because of its low area cost.
However, bufferless flow control makes inefficient use of the network channels.

Table 2.1 compares the advantages and disadvantages of the buffered flow control
techniques. We choose virtual-channel flow control, which among the buffered flow
control mechanisms requires minimum buffer space while offering high throughput and
low latency. Moreover, with virtual-channel flow control packet length is not restricted
by the buffer size and message splitting and reassembling can be avoided.

2.3.5. Routing

The final point in the network which a packet has to reach is given by the packet
destination address. However, the destination address normally does not contain
complete information how these point is reached. In most network topologies there is
more than one possible path between any pair of nodes. Therefore, to deliver the packet
from source to destination, first a path has to be selected. The procedure of selecting a
path is called routing.

Classifications

Depending on where the routing decisions are taken, the routing is classified as
source (or centralized) or distributed routing. With source routing, the exact path taken
by a packet is known before the packet is injected in the network. The routing decision
is taken either by the source node or by a routing function that is central for the network.
The packets sent by the source node have a packet header containing not only a
destination address, but also a description of the path. Each router on the path reads the
packet header in order to determine in which direction to forward the packet. The
routers do not take routing decisions, but simply follow the instructions given in the
packets header.

With distributed routing, the path a packet takes is not known in advance. When the
packet is injected in the network, only the address of its destination node is known.
Each router the packet enters decides in which direction to forward the packet. Thus, the
routing decision is distributed among the routers in the network. The source node does
not have control over the paths taken by the packets it sends.

Depending on how the routing algorithm selects a path from the set of possible
paths Rxy from source node x to destination node y, the routing is classified as
deterministic, oblivious or adaptive. Deterministic routing always chooses the same
path between x and y even if there are multiple possible paths (|Rxy|>1). These
algorithms ignore the path diversity of the underlying topology and typically do a poor
job on balancing the load. Despite this, they are common practice because they are easy
to implement and easy to make deadlock-free. Oblivious routing algorithms, which
include deterministic routing algorithms as a subset, choose a route without considering
any information about the present network state. Adaptive routing algorithms choose a
route taking the current network state into consideration. They adapt their decision to
the state of the network as the usual goal is to balance the network load, to increase the
network throughput and to reduce the packet latency. The state information used by
adaptive routing to take its decision may include the state of a node or channel, length
of a queue and historical information about the channel load. Adaptive routing
algorithms differ in whether the algorithm uses local or global state information and
whether current or history state information is used. The classification of the routing
algorithms is represented in Figure 2.15.

 30

Adaptive

Oblivious

Deterministic

Source (centralized) Distributed

Figure 2.15: Classification of routing algorithms

When a routing function always returns a minimal path, it is referred to as minimal.
Otherwise it is referred to as non-minimal.

Examples of routing algorithms

Dimension-ordered routing [59, 75] is a simple deterministic routing algorithm for
k-ary n-cubes (tori and meshes). A packet injected in the network is first routed along
the highest order dimension until it reaches its final position in this dimension. Then the
routing continues in the next dimension and so on until the lowest dimension when the
packet reaches its destination. If the address of the current packet position is {cn-1, cn-2,
… c0} and the address of the destination node is {dn-1, dn-2, … d0}, the packet is routed
in the ith dimension until |ci-di|=0, for i = n-1, n-2, ...0. For example, in a 2D mesh,
packets are routed first in x-direction and then in y-direction. For that reason the
algorithm is also known as xy-routing.

Valiant’s randomized routing algorithm [80] is an example of an oblivious routing
algorithm. It balances the load for any traffic pattern and almost any topology by
randomizing it. A packet sent from s to d is first sent to a randomly chosen intermediate
node x and then to d. An arbitrary routing algorithm can be used for routing from s to x
and from x to d.

The Minimal adaptive routing [53] algorithm is an example of a distributed
adaptive routing algorithm that uses local state information. Each node can forward a
packet only on channels that will bring the packet closer to the destination. Network
state, typically a queue length, is used to select one of the possible channels.

Definition of a routing algorithm

A routing function is defined formally in the following way. Let an interconnection
network I be defined as a strongly connected directed graph I=(N,C). The vertices of the
graph N, represent the set of network nodes. The edges of the graph C, represent the set
of channels. Depending on whether the routing algorithm is source or distributed and
whether it is node-based or channel-based, the routing function can be defined in three
different ways:

(2.6) PNNR a×:

(2.7) CNNR a×:

(2.8) CNCR a×:

 31

When source routing is used, the output of the routing function is an entire path, P,
as in (2.6). The returned path is an ordered sequence <c1, c2, …,cn> of network channels
(alternatively it can be a sequence of nodes). When distributed routing is used, a routing
function like (2.7) or (2.8) is evaluated once per hop of the packet. The output of the
function is used to select the next channel the packet takes. Distributed routing can be
node-based or channel based. Node-based routing uses a function of the form (2.7). It
takes as input the current node and the destination node. Channel-based distributed
routing uses a function of the form (2.8). The routing decision is based on the current
channel and the destination node.

Distributed routing cannot implement every routing strategy which is possible with
source routing. This is because little or no history is used from a packet to compute its
next hop. In function (2.7), for example, nothing is known about the packet except the
current node and the destination node. Function (2.8) adds information about the current
channel, providing just enough history (where the packet comes from) to decouple
dependencies between channels, which is important for avoiding deadlock.

Deadlock and livelock

Deadlock is a permanent condition in which a system cannot continue to function
unless some corrective action is taken. A typical deadlock condition is waiting on an
event that will never occur, where the reason is a circular resource dependency.
Deadlock occurs in interconnection networks when a group of packets is unable to make
progress because the packets are waiting on one another to release resources, usually
buffers or channels. Such a situation is shown in Figure 2.16.a. The figure presents four
routers (squares) and four packets (arrows) traversing them. Each packet traverses one
router straight and enters a second router where it wants to make a right turn. To make
the turn each packet has to wait (dashed arrow) for the requested channel to become
free. The requested channels, denoted as c1 to c4, will become free only when some of
the packets advance and release their channels, which will never happen. Thus, the four
packets are deadlocked and will never make progress.

C1

C3

C4 C2

C1

C3

C2C4

a) circular resource dependency b) resource dependency graph

Figure 2.16: Deadlock in an interconnection network

For the purpose of analysis of deadlock situations, resource dependency graphs are
used [31]. The resource dependency graph of our example deadlock situation is given in

 32

Figure 2.16.b. The nodes in the graph represent resources. In our situation these are
channels. The edges of the graph represent resource dependencies; for a given resource
(node), its output edges direct to the resources requested by the current resource owner,
as here the owners are packets. For example, Figure 2.16.b presents a situation where
the packet that holds channel c1 requests (waits for) channel c2. In resource dependency
graphs, deadlock situations are recognized as cycles.

Two approaches are used in networking to cope with deadlock: deadlock avoidance
and deadlock recovery. We will discuss each in turn.

Deadlock avoidance

Deadlock can be avoided by eliminating cycles in the resource dependency graph.
One way to avoid the cycles is by restricting the routing function. A general framework
for design of restricted deadlock free routing algorithms for mesh networks is proposed
by Glass et al. [33]. It is known as the turn model.

The turn model defines a deadlock cyclic dependency in terms of the particular
turns the packets have to take in the network to construct the dependency. Figure 2.17.a
shows the eight possible turns in a two-dimensional mesh and the two simple cycles that
can be created by combining these turns. By inspection, to avoid deadlock we must
eliminate at least one turn in each of these two cycles. Three deadlock-free routing
algorithms constructed by turn elimination are shown in Figure 2.17.b, c and d. In west-

first routing shown in Figure 2.17.b, the two turns going in west directions are
eliminated. A packet must take all its west hops before moving in any other direction.
After turning from the west direction it may route in any other direction except west. In
north-last routing shown in Figure 2.17.c, the two turns from north to west and to east
are eliminated. A packet may move freely between the directions except north. Once a
packet turns north it cannot route in any other direction. Finally, by eliminating the
north-to-west and the east-to-south turns negative-first routing is derived. The east and
north directions are considered as positive (+x and +y) horizontal and vertical directions,
while west and south are considered as negative (-x and -y) horizontal and vertical
directions. With this notion of direction, in negative-first routing a packet must move
completely in the negative direction before changing to a positive direction. Once in a
positive direction, the packet stays there until it reaches its destination.

a) Simple cycles b) West-first

c) North-last d) Negative-first

Figure 2.17: Turn model for a two dimensional mesh network

Figure 2.17 presents three basic cases of turn elimination resulting in deadlock-free
routing. Other similar deadlock-free routing algorithms can be constructed by
eliminating other pairs of turns [33].

 33

Dimension-ordered routing can also be interpreted from the perspective of the turn
model. As an example, in Figure 2.18, we represent the XY-routing in terms of the turn
model. In XY-routing, a packet is first routed completely in the x direction before
turning to the y direction. Only turns from horizontal to vertical directions are allowed.
While the turn model eliminates only one turn in a simple cycle, the dimension-ordered
routing eliminates two turns. Thus, the dimension-order routing is more restrictive than
the general turn model.

Figure 2.18: XY-routing (dimension ordered routing) as a more restricted version of the
turn model.

The turn model and dimension-ordered routing restrict the path diversity which
reduces the fault tolerance. In the case of dimension-ordered routing the path diversity is
reduced to zero; only one path can be taken between source and destination.
Additionally, these techniques cannot remove the channel cycles inherited in topologies
such as the torus.

Another approach for eliminating cycles in the resource dependency graph and
avoiding deadlock is by imposing a partial order of the resources and insisting that a
packet is allocated resources in ascending order. With such a policy a deadlock cycle
cannot occur, because to construct the cycle at least one higher-numbered resource
holder must request a lower-numbered resource, which is not allowed.

Dally et al. [24] proposes a method for deadlock avoidance by resource ordering
which is illustrated by the example given in Figure 2.19. The figure presents a four-
node ring network. In each node the channels (and the buffers) are duplicated and
divided into two classes, class A and class B. When a new packet is injected in the
network it uses only the resources of class A, but after the packet crosses the border
between the fourth and the first node, it can use resources only from class B. As shown
in the figure, with such a resource allocation policy cyclic dependencies between
resources are avoided.

A

B

A

B

A

B

A

B

Figure 2.19: Deadlock avoidance by resource ordering

A disadvantage of the resource ordering approach is that the amount of network
resources is increased in order to introduce resource classes and provide proper
ordering. Also, an imbalance of resource usage is observed – while some resources are
overloaded others are underutilised.

 34

Deadlock recovery

The techniques discussed until now focus on eliminating the conditions that cause
deadlock. These methods require a restricted routing function or additional resources to
break the resource dependencies. Another approach for dealing with deadlock is to
recover from deadlock when it occurs instead of avoiding it. Deadlock recovery relies
on the fact that deadlocks will be infrequent and the average-case performance rather
than the worst-case performance is considered important. Deadlock recovery algorithms
involve two key phases: deadlock detection and recovery. In the detection phase, the
deadlock configuration is recognized. The detection is usually accomplished using
timeout counters. With each network resource is associated a counter, which is reset
when data is sent through the resource. However, if the counter reaches a predetermined
threshold, the resource is considered deadlocked and the recovery phase is started. The
deadlock recovery may be regressive or progressive. In regressive recovery, the packets
that are deadlocked are removed from the network. Notification to the sender of the
dropped packet is required in order to initiate retransmission. In progressive recovery
[13], the deadlocked packet is not dropped, but drained in a special escape buffer. Once
in the escape buffer, the packet is routed using a deadlock free routing algorithm. In this
way, the restrictive deadlock free routing is used rarely, only when a deadlock occurs,
while in the rest of the time routing is given full freedom.

Livelock

Livelock is a situation in which a packet continues to move in the network but
never reaches its destination. Livelock may occur with non-minimal routing algorithms
that misroute packets. If there is no limit on the maximum number of times a packet
may be misrouted, the packet may remain in the network indefinitely. One technique for
avoiding livelock is to add a small amount of state information to each packet. The state
can be a misroute count, which holds the number of times a packet has been misrouted.
Once the count reaches a threshold, no more misrouting is allowed. A similar approach
is to store an age-based priority in each packet. When a conflict between packets
occurs, the oldest packet wins.

Having in mind the area constraints on the router implementation, increasing the

number of the routing resources is not desirable. Among the reviewed deadlock
solutions, only the turn model does not require additional resources. It simply restricts
the routing algorithm which is inexpensive to implement. Although restricted, the
routing algorithm can still be made adaptive and flexible. The disadvantage is that the
turn model works only for mesh networks and not for tori.

2.3.6. Quality of Service (QoS)

Network design is usually focused on improving the average network performance
and aims at achieving higher average throughput and lower average latency. But no
matter how good the employed network techniques are, situations remain in which
congestions occur and resources are allocated to one network user while another has to
wait. Hence, different network users may experience different throughput, latency and
in general a different quality of service. On the other hand, different parts of the
network traffic may have different requirements about the services received from the

 35

network. For example, some part of the traffic may be latency-sensitive, while another
part is not. Some part of the traffic may tolerate data loss, while others do not.

It is useful to divide the network traffic into a number of traffic classes according to
the services they require. The traffic classes fall into two broad categories: guaranteed

service (GS) and best effort (BE) services. Guaranteed service classes are granted a
certain level of performance as long as the traffic they inject complies with a set of
restrictions. The restrictions usually set an upper bound on the volume of traffic the
client can inject – the maximal offered throughput. In exchange, the network specifies
guarantees about the services it provides, for example the maximal latency.

In contrast to the guaranteed traffic, the network does not give any guarantees about
the services provided to the best effort traffic. Depending on the current traffic
conditions, the best effort traffic may experience an arbitrary low throughput and high
latency. The network will simply do its best to deliver the packet to its destination.

The network services are categorised into classes according to a number service
characteristics. The service can be with or without losses depending on whether it
guarantees that all data sent on the network are delivered. The service may or may not
guarantee that data is delivered without fault. The service may or may not guarantee that
data is delivered in the order it was sent. According to their quantitative characteristics
services can be classified as low or high throughput, low or high latency, low or high
jitter. When some of the quantitative characteristics are of importance the service
provides a worst case bound for it and respectively falls in the category of guaranteed
services. The services can be also classified according to the way they are accessed:
whether they are granted or have to be requested, whether they require or not a
connection to be established between source and destination.

2.4. Network-on-Chip solutions

Having discussed all the major techniques we are now well equipped to some recent
network-on-chip solutions. We discuss what techniques they use for implementing the
network and for providing guaranteed and best effort services. We discuss only the most
mature solutions and techniques that are relevant to this thesis.

2.4.1. Circuit switching solutions

SoCBUS [84] is a network-on-chip solution that combines circuit switching and
dropping flow control. The network uses a two-dimensional mesh topology. As in
circuit switching, before sending the data a request is sent on the network to reserve
channels to the destination. The request is routed using distributed minimal adaptive
routing. In contrast to circuit switching, when the request is blocked it is not stored in
the switch, but is dropped as with dropping flow control and a NACK signal is sent
back to the sending node. The advantage of the dropping flow control in this case is that
it makes the network deadlock-free, because all blocked requests are dropped. Circuit
switching has a simpler and more area efficient implementation than packet switching
techniques. The reported maximal clock speed of a SoCBUS switch is 1.2 GHz in 0.18

µm technology.
A circuit switching network can provide guaranteed services by keeping circuits

permanently open. A circuit is opened once during the setup phase and then remains
open. The opened circuit guarantees constant throughput and latency, because the
resources it uses are allocated and not shared. But during the time the circuit is open the

 36

physical channels it uses are reserved and cannot be used by other circuits. Since the
number of physical channels is limited, only few connections can be opened
simultaneously. On the other hand, when the circuits do not remain open but are closed
and opened again when needed, latency cannot be guaranteed because the time for
opening a connection is not bounded (the request may be blocked and dropped many
times). Therefore, circuit switching is not an efficient solution for providing guaranteed
services, especially in dynamic systems.

Wolkotte et al. [86] proposes a circuit switching network with improved capabilities
for providing guaranteed services. The improvement consists in increasing the number
of physical channels in the network. The network uses a two-dimensional mesh
topology, but instead of one physical channel between the neighbouring routers there
are four physical channels. Thus, this solution utilises the huge amount of wiring
resources provided by the semiconductor technology. By increasing the number of
physical channels, the number of circuits that can be opened simultaneously is also
increased.

To simplify the design further, the network proposed by Wolkotte et al. does not
implement mechanisms for opening and closing circuits (request, ACK and NACK
signalling). Instead, each switch has a configuration interface through which
connections are set between the switch input and output ports. The reported area of a

switch with 4-bit wide channels, implemented in 0.13 µm technology is 0.05 mm2 and
the maximal clock frequency is 1 GHz.

The configuration interface is accessed through an additional serial wormhole
network with ring topology [85]. Each router in the wormhole network is connected to
the configuration interface of a circuit switch. The wormhole network is used to carry
configuration messages to the circuit switches and to handle the best effort traffic in the
system. To configure a circuit, configuration messages are sent over the wormhole
network to all the switches along the path of the circuit.

2.4.2. Packet switching solutions

The Æthereal network-on-chip [34] provides guaranteed services (GS) and best
effort (BE) services by combining two techniques: time-division multiplexing (TDM)
and wormhole routing. The routers of the Æthereal network consist of two parts. One
part handles the BE traffic and employs wormhole routing. The other part handles the
GS traffic and employs TDM. The network has a global notion of time. The network
channels are used on a timeslot basis. GS services are provided by timeslot reservation.
A GS communication channel is constructed by reserving timeslots on the physical
channels along the path between the source and the destination node. All the GS traffic
in the network is scheduled in timeslots. The BE wormhole network uses the time slots
left unused by the GS traffic without preliminary reservation.

The Æthereal network is also equipped with a network interface (NI) [66]. The NI
is a component connecting the IP modules to the network routers. The functionality
provided by the NI is related to partitioning messages into packets, message
reassembling and end-to-end flow control.

The Æthereal network is available in three versions: GS-BE distributed
programming architecture, GS-BE centralised programming architecture and GS
centralised programming architecture. With the distributed programming architecture
every router is equipped with a timeslot table which controls the forwarding of GS
packets from input ports to output ports. The tables are configured by the senders by

 37

sending a special configuration BE packet which travels from source to destination
configuring the tables of all traversed routers. The area of this version of the router is

0.24 mm2 (32-bit channels, 24 word buffers and 256 slots in 0.13 µm CMOS
technology) and the maximal clock frequency is 500 MHz.

The GS-BE centralised programming architecture moves the timetables from the
routers to the NIs. Now the tables control the exact time the GS packets are injected in
the network. The GS packets traverse the network with a constant speed of one hop per
cycle and follow predetermined paths. Hence, knowing the packet injection time we
know exactly which timeslots on the network channels the packet utilises. The tables
programming is preformed by a central system authority (root). The root configures the
NIs either through memory mapped I/O interface or through special system GS or BE
packets (ReserveSlot and FreeSlot). By moving the timetable to the NI the router area is
reduced to 0.13 mm2. The maximal clock frequency is 500 MHz.

The GS centralised programming architecture is the same as the GS-BE centralised
but without the wormhole part. Thus this version does not support BE traffic but the
router area is reduced to 0.03 mm2 and the maximal clock frequency is 1000 MHz.

TDM has simple implementation and provides a straightforward way for achieving
predictable networks (and systems) operation. However, TDM alone cannot handle BE
traffic. A separate BE solution is required, which adds extra cost. A drawback of TDM
is also the need for schedule computation. Every time the setup of the GS connections
in the network is changed a new schedule has to be computed. Schedule computation is
an NP complete problem and as the size of the network increase reconfiguring the
network becomes a heavy and slow task. This inflexibility make a TDM network not the
most suitable solution for a dynamic system. Furthermore, the global notion of time in a
TDM network requires global clock distribution, which makes the network difficult to
apply in the GALS (Globally-Asynchronous Locally-Synchronous) systems foreseen in
the near future.

The area of the Æthereal router with five 32-bit channels, 24 word buffers and 256

slots in 0.13 µm CMOS technology is 0.24 mm2. The router can operate at maximal
clock frequency of 500 MHz.

The Æthereal network is also equipped with a network interface (NI) [66]. The NI
is a component connecting the IP modules to the network routers. The functionality
provided by the NI is related to partitioning messages into packets, message

reassembling and end-to-end flow control. The size of the NI is 0.143 mm2 in 0.13 µm
technology and operates at a maximal clock frequency of 500 MHz.

The Æthereal solution does not consider a particular network topology but the
network is generated automatically to satisfy the communication requirements of a
target application as at the same time the network area overhead is minimised [36]. The
generated network can be of any topology, regular or irregular. While such a network
minimizes the area overhead and provides a scalable solution for IP core
interconnection, it is not clear whether it structures the global on-chip wiring and helps
to solve the signal integrity problem.

aSOC [52] is a framework for on-chip communication in heterogeneous tiled
architectures. The topology of the network is a two-dimensional mesh. aSOC
implements an advanced TDM scheme capable of handling more dynamic traffic
patterns, but still keeps the hardware simple. Instead of a slot table, each router has a
sequencer that allows switching between different timeslot schedules at run-time. A new
schedule is not loaded at run time; all the schedules are loaded at configuration time and
at run-time different schedules can be activated. Although this approach adds flexibility

 38

to TDM, it still requires all communications to be scheduled at compile time.

Implemented in 0.18 µm technology the network speed is 400 MHz.
Proteo [70] is packet switching virtual cut-through NoC. It is intended for

heterogeneous systems. The network itself is heterogeneous. Its topology is hierarchical.
A number of subnets with a ring topology are connected by a system-wide ring network.
The subnets interconnect clusters of functionality-related components. The network is
constructed from a number of parameterised components. By choosing the components
parameters at design time, a network that meets the requirements of an arbitrary
application can be constructed. The packets in the network are of limited length, which
requires message splitting and reassembling at the network entrance and exit point.

In Nostrum NoC [56], guaranteed services are provided using a TDM related
technique called temporally disjoint networks. The advantage is that no slot tables are
needed. Instead, a specific slot reservation scheme called looped containers is used. To
our knowledge, no implementation results are available for this network.

SPIN [10] is a packet switching wormhole network with distributed adaptive
routing. The topology is indirect and employs a three stage Clos network [27]. While
this network scales well in number of terminal nodes, it does not show structured and
regular wiring. Therefore, it does not help in coping with the signal integrity problem.

Implemented in 0.18 µm the network router has area of 0.24 mm2 and operates at 200
MHz [12].

2.4.3. Clockless solutions

The NoC solutions presented below are also packet switching, but they are
implemented using asynchronous design techniques and do not rely on a globally
distributed clock. Therefore, they have the advantage of being directly applicable for
GALS systems foreseen for the near future.

The MANGO network, proposed by Bjerregaard et al. [18], is a clockless NoC
solution that employs virtual channels (VCs). The network provides guaranteed services
(GS) as well as best effort (BE) services. The GS services are connection-oriented and
are provided by means of VC reservation. The VCs at each physical channel are divided
in two sets – one set of VCs serving the GS communications and one set serving the BE
communications. The VCs from the GS set are used to carry GS connections. Each VC
from the set can be statically allocated to at most one connection. Thus, connections do
not share VCs and blocking is avoided. Data is sent over the connections without
additional control information. The VCs from the BE set are used to carry
connectionless source-routed data packets. The VCs from this set are shared and are
allocated to packets dynamically. Therefore, packet blocking is possible and throughput
guarantees cannot be given.

The two sets of VCs share the same physical channels, but in the router they are
treated separately. The router in the MANGO network consists of two parts, a GS part
and a BE part, which manage the data from the corresponding set of VCs. The GS part
of the router multiplexes the GS data arriving on the input links to the output links. The
multiplexing is controlled by a map stored in the GS part of the router. The map gives
the correspondence between the input GS VCs and the output GS VCs, as this
correspondence is considered static during a connection usage. The map is loaded in the
GS part of the router through the BE part by sending a BE packet to the router. Thus, to
set a connection, configuration BE packets have to be sent to all the routers along the
route of the connection. The BE part of the router controls the data transfer on the BE

 39

VCs. It implements the functionality of a virtual channel router. It retrieves the routing
information from the received packet headers and forwards the packets according to this
information.

The reported area of a MANGO router [18] with five 32-bit links and 8 VCs per

link implemented using 0.12 µm CMOS standard cells is 0.188 mm2. The performance
of the router corresponds to 515 MHz.

Felicijan et al. [32] propose another clockless NoC that employs VCs, but instead of
VC reservation, GS services are provided by means of VC priorities. The network has
four VCs per physical channel. Three of them are used for guaranteed service
connections and the BE traffic shares the fourth VC. The four VCs are assigned static
priorities and the BE traffic uses the one with the lowest priority. Thus, packets using
higher priority VC receive better services: higher throughput and lower latency.
However, since packet blocking on the high priority VCs is still possible, the received
service is difficult to predict and guarantee. To our knowledge, no implementation
results are available for this network.

2.4.4. Summary

Table 2.2 summarises the techniques and the implementation results for the
reviewed NoC solutions

Table 2.2: Summary of the reviewed NoC solutions.
na = information is not available

NoC
Provided

services
Topology Flow control Routing

Area

[mm2]

F

[MHz]

Tech.

[mm]

SoCBUS BE 2-D mesh
Circuit switching

with dropping

Distributed,

minimal

adaptive

na 1200 0.18

Wolkotte GS, BE
2-D mesh,

Ring

Circuit switching,

cut-through

(serial)

na 0.05 1000 0.13

Ǽ thereal

Distib.
GS, BE Any TDM, Wormhole

contention-free

routing, source

routing

0.24 500 0.13

Ǽ thereal

Centr.
GS, BE Any TDM, Wormhole

contention-free

routing, source

routing

0.17 500 0.13

Ǽ thereal

GS only
GS Any TDM

contention-free

routing
0.03 1000 0.13

aSOC GS 2-D mesh TDM na na 400 0.18

Proteo na
Hierarchical

rings
na na na na na

Nostrum GS, BE 2-D mesh TDM
diflection

routing
na na na

SPIN BE
3-stage Clos

network
Wormhole

Distriburted

adaptive
0.24 200 0.13

MANGO GS, BE grid-type Virtual channels source routing 0.19 515* 0.12

Table 2.3 compares only the NoC solutions providing both GS and BE services. In
all these networks, GS is provided by means of resource reservation. The approaches
rely either on circuit reservation, time-slot reservation or VC reservation. To open a GS
connection, resources (circuits, time slots or VCs) are reserved over network channels.

 40

All the networks assume that the reservation is done centrally, by a global network
authority. Therefore, they require a centralized system organization.

The centralised network resource management ease the application of deadlock
avoidance solutions. A deadlock avoidance algorithm can be directly incorporated in the
resource reservation and traffic planning in the system.

Although the networks differ in term of the techniques employed, in all of them
opening a GS connection requires that a central authority reserves resources at network
channels. From an algorithmic point of view, the problem of resource reservation in all
NoCs presented in Table 2.3 is the same or at least quite similar. In all of them the
network channels provide multiple resources of some type (lanes, time-slots, VCs) and
an algorithm searches for resources to be reserved at the channels from source to
destination, such that a path is constructed. Thus, we may expect that the task of
opening a GS connection will have similar computation complexity for these networks.
However, the approaches differ in whether the resources on network channels are
ordered or not. While it is not of importance which circuits or VCs are reserved on a
channel, for the time-slot reservation it is of importance which time-lots are reserved.
For example, in the most restrictive case, if a time-slot i is reserved on one channel, then
the time slot i+1 must be reserved on the next channel and so on, such that the data
advances on the path with every time slot. Thus, the time-slot reservation (TDM)
approach is more restrictive in resource reservation. As a result, providing a GS
connection when most of the resources are occupied will be more difficult in a TDM
network than in a network where GS are provided by means of VC or circuit
reservation. Moreover, since TDM relies on a global notion of network time it is not
suitable for application in globally-asynchronous locally-synchronous (GALS) system
where global clock, and therefore global notion of time, is not available.

Table 2.3: Specifics of the networks providing GS and BE services

NoC GS approach
Applicable in

GALS systems

GS connection

is configured by

Combining

GS and BE

Wolkotte
Circuit

reservation
yes BE packets

Separate

networks

Ǽ thereal
T ime-slot

reservation
no BE packets

Separate

router parts

Nostrum
Time-slot

reservation
no The source node Single router

MANGO
VC

reservation
yes BE packets

Separate

router parts

The NoC solutions presented in Table 2.3 differ in the mechanisms used for
configuring (opening) a GS connection; i.e. the actions that have to be taken to open a
GS connection after resources have been reserved for it at a higher level. In most of the
networks a GS connection is opened by BE packets that configure the routers along the
connection. Either separate BE packets are sent to all the routers along the GS
connection, or a single BE packet is sent through the routers along the connection. In
any case, an explicit connection setup is required before using the connection. Since BE
packets are used for that, no guarantees can be given for the duration of the setup
period. In Nostrum a GS connection is opened directly by the sending node without
sending an explicit BE packet. However, throughput guarantees can be claimed for a
connection only during the network setup period when the system is started. Therefore,
in Nostrum GS connections cannot be opened dynamically during the system operation

 41

time. Only in Æthereal (centralised programming architecture) the configuration is done
by GS packets and the time for opening a connection can be predicted.

Finally, Table 2.3 compares how the networks combine the GS and BE services in a
single solution. Wolkotte uses two separate networks to carry GS and BE traffic.
Æthereal and MANGO uses a single network, but in the routers both types of traffic are
processed separately. In the Æthereal router BE and GS packets use different data paths
(buffers) and in the MANGO router they are processed by separate sub-routers. Only in
Nostrum both traffic types are processed by a unified router solution.

2.5. Conclusion

In this chapter we review the most important techniques for building
interconnection networks. Two-dimensional mesh and torus topologies naturally fit the
physical placement of the tiles on a chip and have the potential to provide a simple and
regular global wire layout together. Among the reviewed flow control mechanisms,
virtual-channel flow control provides a balance between performance and buffer size.
Taking into account the area constrained NoC implementation, the most efficient
solution to avoid deadlock is the restricted routing, using the turn model.

The main problem in the NoC design for our application domain is the provision of
guaranteed services together with best effort services. The difficulty comes from the
fact that the resources available for building a router are limited due to the design area
constraints. In most of the reviewed NoCs, separate techniques are used for each service
class. Either two separate networks are implemented to deal with each traffic class or
the routers consist of two separate parts, each dedicated to a different traffic class. In the
second case, both types of traffic share the same network channels, but inside the router
they are processed by different parts of the router. As we will demonstrate in the rest of
the thesis, this separate treatment of BE and GS is unnecessary. By unifying the two
classes of traffic solution can be found.

The second problem in the NoC design is the network reconfiguration. The
approach taken for network reconfiguration determines whether the network can be
reconfigured at runtime and whether the time for reconfiguration can be predicted and
guaranteed. Since we aim at dynamically reconfigurable system, runtime
reconfiguration and predictable reconfiguration time are mandatory for out network.
The solution we present satisfies this requirement.

The third problem that has to be considered when designing a NoC is the
computation of the network configuration. In most of the reviewed network solutions it
is assumed (some times silently) that the configurations loaded into the network are
provided by some central network authority or that pre-computed configurations are
used. We also assume a central system authority. However, in our case the
configurations are computed at run-time and therefore the time for computing a
configuration is a critical issue – it must be small and bounded. We will present a
network solution that requires a configuration computing task of lower complexity that
the task required by the statically scheduled (TDM) network solutions. Thus it is a
solution more suitable for systems where the network configuration is computed at run-
time.

 43

Chapter 3

Network-on-Chip architecture*

This chapter proposes a router architecture and a resource

reservation scheme, which when combined enable us to

provide guaranteed as well as best effort network services

in a virtual channel network. The concept is verified

through a simulation and compared with other solutions.

3.1. Introduction

The review of networking techniques in Chapter 2 shows that virtual-channel flow
control has the following two advantages over other flow control techniques: i) it allow
the size of the network buffer to be reduced without significantly affecting the network
performance, ii) the length of the network packet is not restricted by the size of the
network buffers.

In Chapter 4 we shall see that a major part of the area of a network router of such a
small scale as a NoC router is occupied by buffers. Therefore, for the area constrained
router implementation it is crucial to minimise the router buffer size. However, with
most flow control mechanisms the buffer size reduction has a negative effect on the
network performance; the network throughput drops and the message latency increases.
For some flow control mechanisms the small buffer size also implies impractical
constraints on the packet length. With the buffer size that we aim in our design (of
several data words) the maximal packet length would be only a few words, which would
be rather inconvenient when handlings intensive data streams – the major part of our
traffic.

The virtual channel flow control is the only flow control mechanism which enables
us to reduce the total size of the router buffers, and thus to minimise the area, without
sacrificing performance; the cost is only a small increase of latency while the packet
length is unrestricted. This is the reason for us to choose virtual channel flow control for
our Network-on-Chip (NoC). A network based on a virtual-channel flow control we
shall call a virtual channel network.

In this chapter we look at the possible architectures for a router in a virtual channel
network. Our objective is to define an architecture that allows providing of predictable
communication services. We propose predictable router architecture and complement it
with a method for providing guaranteed services (GS) and best effort services (BE) on a
network level. Like most of the other NoCs, the approach we use for providing
guaranteed services relies on a centralised system organisation. What distinct our

* Major parts of this chapter have been presented at the International Symposium on VLSI [6], at the
International System-on-Chip Conference [5], at the EUROMICRO Symposium on Digital System Design [1]
and at the PROGRESS Embedded Systems Symposium [3].

 44

approach is the unified treatment of BE and GS traffic at a router level. Our router
architecture does not include features that are specific for the one or the other type of
traffic. The distinction between BE and GS traffic is made at a network level when
resources are distributed between the traffic by a central system authority. Thus, the
router architecture is simplified and the architectural choices are less traffic dependent.

In the following discussion we consider a network like the one shown in Figure 3.1.
The network routers are arranged in a grid. Each router is connected to its neighbouring
routers and to a local processing element (PE) by full-duplex channels. The constructed
network topology is a two-dimensional mesh.

R R R R R

R R R R R

R R R R R

R R R R R

R R R R R

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

Figure 3.1: Network architecture

All routers in the network are identical. Each router has five input and five output
ports – four connected to its neighbours and one to its local PE. The routers at the edge
of the mesh are connected to fewer than five channels. The ports that are not connected
to channels are either left unused or connected to external interfaces or peripheral
devices. The only active network components are the routers. The PEs are not
considered part of the network. They are present as the source and sink of data.

For more gradual explanation of the virtual channel router and its operation, we first
introduce a wormhole router and then extend it with virtual channels.

3.2. Wormhole router architecture

Wormhole routers, as the name suggests, employ wormhole flow control [68].
Historically, the wormhole flow control was called wormhole routing, but actually has
nothing to do with routing. The typical architecture of a wormhole router is presented in
Figure 3.2. The router has a number of input and output ports connecting it to
neighboring routers or a PE. In the considered example network, the routers have five
input and five output ports. Each input port has a first-in-first-out (FIFO) buffer to store
the incoming data. From the buffer the data is switched to an output port and
transmitted to the next router. The switching is done by a fully connected switching
fabric configured by a switch allocator.

 45

IN 0

IN 1

IN 2

IN 3

IN 4

Crossbar
switch
(p p)

OUT 0

OUT 1

OUT 2

OUT 3

OUT 4

Switch
allocator

Figure 3.2: Architecture of a wormhole router

The data in a wormhole network is transported in packets. The packet encapsulates
the transported data together with a small amount of control information. The packets
are constructed of a series of smaller data units called flow control digits or flits. A flit
is the atomic data unit that the flow control operates on; this is the data unit transmitted
between two routers in a single flow control transaction. Flits are of constant size – one
or more data words. Each flit is tagged as either: header (H), body (B) or tail (T).
Packets are constructed by flits of different type. A typical packet format is shown in
Figure 3.3. A packet starts with one or more header flits (H), followed by one or more
body flits (B) and terminates with a tail flit (T). The sequence of header flits forms the
packet header which constructs the beginning of the packet. The packet header carries
routing information and control information used by routers. The sequence of body flits
carries the transported data (the payload). The tail flit indicates the packet end.

HHBBBBT

1n

n
-1

Figure 3.3: Packet format

To send data over the network, a sender PE constructs a packet and injects its flits
in the network. Each router on the packet’s route forwards the flits to the next router
until the destination PE is reached. The destination PE receives the packet flit-by-flit.

In each traversed router, before it is forwarded the packet passes through two stages
of processing. The first stage is the routing stage. In this stage the router examines the
routing information in the packet header and determines the packet destination output
port. In the second stage the packet is allocated a crossbar connection to the destination
output port. This is the switch allocation stage. When the switch connection is allocated,
all the packet flits are forwarded to the output port and the switch connection is released
after the tail flit.

When the destination output port is currently occupied by another packet, the
crossbar connection can not be provided and the packet blocks. The blocked packet
waits until the port is released and the switch connection is allocated. While waiting the
packet is stored in the network buffers. The first flits of the packet are buffered in the

 46

router where the blocking occurred. The next part of the packet is buffered in the
previous router and so on. To avoid data loss, the flow control provides a back pressure
mechanism that blocks the output port of the previous router in case the buffer of the
next router gets full. In that way, the blocking propagates back along the packet route to
the packet tail or the source PE.

It is possible that several packets destined for the same output port have arrived on
different input ports and are at a same time in the switch allocation stage. In such case
packet contention occurs and so arbitration is needed to solve it. One of the contending
packets is chosen according some arbitration policy and granted the output port while
the other contending packets have to wait.

The arbitration and allocation is done by the switch allocator (see Figure 3.2). The
switch allocator receives requests from the input ports, decides what switch connections
to provide and configures the crossbar switch. Although it is not shown in Figure 3.2,
the switch allocator interacts with the input ports too. Figure 3.2 is simplified to show
only the data path in the router and does not show the control paths. If we look at each
input port in more detail, we find not only a FIFO buffer, but also control logic which
together with the buffer forms an input controller. The input controllers of all ports
interact with the switch allocator as shown in Figure 3.4.

Besides the FIFO, the input controller consists of routing logic and port control
logic. The routing logic examines the packet header and determines the packet
destination output port. The port control logic stores the current state of the packet and
interacts with the switch allocator to request an output port and to forward flits. The
input controller also sends information about the available buffer space back to the
previous router. This information is usually referred to as credits. The credits are used
by the switch allocator in the previous router to prevent sending data to full buffers.

T
o
th
e
pr
ev
io
us

ro
ut
er

C
re
di
ts
 f
ro
m

ne
xt
 r
ou
te
rs

Figure 3.4: Input controller – structure and connection to the switch allocator

The switch allocator arbitrates between the requests coming from all input ports and
controls the flit forwarding process. The maximal rate at which the requests can arrive
and flits can be forwarded is determined by the time for transmitting a flit over a
channel between two routers. Therefore, the maximal rate at which the switch allocator
operates is determined by the flit transmission time. The flit transmission time depends
on the physical channel rate and the flit size. A flit of size L bits is transmitted on
channel of rate b bit/s for time L/b seconds. Thus, the larger the flit, the lower the switch
allocator operating rate is. The flit size is used to adjust the speed of the router to the
speed of the physical channel. This is needed when the router implementation is slower
than the rate at which the data is delivered by the channels. The flit size also influences

 47

the buffer size. As we shall see in Chapter 4, our router implementation is fast enough,
so we can choose the smallest flit size to minimize the buffers. In our network, the size
of the flit is a single word and a flit is transmitted over a network channel in a single
clock cycle.

In a wormhole network, blocked packets are stored not in a single router but spread
over several routers along the route. In each of the routers a packet occupies a FIFO
buffer and its input channel. These channels cannot be used by other packets until
released, so other packets may block waiting for them. These packets may, in turn,
cause other packets to block and so on, the blocking spreads as a tree in the network.
This is known as the effect of tree blocking. Tree blocking is the reason why wormhole
networks have a low saturation throughput. Tree blocking increases the packet blocking
probability and as a result the network channel utilisation and the network saturation
throughput decreases. For a formal discussion on the performance of wormhole
networks, refer to [30, 44].

The high packet blocking probability in wormhole networks causes low saturation
throughput and low channel utilization. To improve the performance of wormhole
networks, virtual channels should be employed.

3.3. Virtual channel router

Virtual-channel flow control is a technique that allows several logically
independent channels to share the same physical channel. Employing virtual channels to
improve the performance of a wormhole network was proposed by Dally [21]. The idea
of virtual channels is shown in Figure 3.5. The figure shows two routers with a physical
channel between them. In the transmitting router, several virtual channels (VCs) are
multiplexed on the physical channel. In the receiving router the VCs are demultiplexed
and buffered separately. Thus, the VCs time-share the physical channel. The
multiplexing is controlled by an arbiter and the arbitration policy determines how the
bandwidth of the physical channel is allocated to the VCs.

The packets traverse the network using VCs. When a packet blocks, it keeps the
VCs it traverses occupied. However, the traversed physical channels are not blocked
since other VCs on these channels can continue to carry data. Hence, packet blocking
does not directly cause physical channel blocking and the effect of tree blocking is
reduced. Therefore, employing VCs in a wormhole network improves the physical
channel utilization and the network saturation throughput. The cost is only a small
increase of the average packet latency; however, the worst case latency stays the same.

M
U
X

D
E
M
U
X

Figure 3.5: Implementing virtual channels (VCs) on a physical channel

 48

Figure 3.6 presents two possible architectures for a virtual channel router. They
differ in where the VC multiplexing takes place. In the architecture of Figure 3.6.a, the
VCs are multiplexed immediately after the buffers, before the crossbar inputs. The

crossbar is symmetric – in a router with p ports the crossbar size is p×p ports. Hence, we
call this architecture a symmetric architecture. With the symmetric architecture the size
of the crossbar does not depend on the number of VCs. In the second architecture shown
in Figure 3.6.b, the VCs are directly connected to the crossbar without multiplexing.

The crossbar is asymmetric – for v VCs per physical channel, the crossbar size is pv×p
ports. Hence, we call this architecture an asymmetric architecture. With the asymmetric
architecture the crossbar size depends on the number of VCs.

As we shall see, the asymmetric architecture simplifies the router control logic, but
because of its larger crossbar it is practically excluded from consideration [21, 62].
However, in Chapter 4 we show that when appropriately implemented the area results
for the asymmetric architecture can be competitive with those of the symmetric
architecture.

Figure 3.6: Architectures of a virtual channel router; p – number of ports; v – number of
VCs per port

Compared to the wormhole router, the virtual channel router increases the number
of buffers. However, the total amount of buffer space does not increase, because the
buffers can be smaller. A given fixed amount of storage space per input port can be
distributed among a number of VCs. For example, we can have a small number of VCs
with large buffers or many VCs with a small amount of buffer space per VC; if only one
VC is used the virtual channel router turns to a wormhole router. This trade-off was
studied by Dally [21]. The results show that it is advantageous to have more VCs with a
small buffer space, because in this way the network saturation throughput is increased.
In general, there is little performance gained by making the VC buffers deep.

 49

If the amount of buffer space per VC is fixed, the increase of the number of VCs
linearly increases the total amount of buffer area per input port. However, the saturation
throughput of the network does not increase linearly but logarithmically. Adding a small
number of VCs first causes a large increase in throughput, but as more VCs are added
the gain diminishes. Dally’s results [21] suggest that for uniform traffic four to eight
VCs per physical channel is adequate. For example, four VCs per physical channel
result in 75% of the throughput of a network with 20 VCs. Further increase of the VCs
to eight results in 80% of the throughput of a network with 20 VCs. Since the doubling
the VCs doubles the buffer area but improves the throughput only by 5%, in our
network we use four VC per physical channel.

Compared to a wormhole router, a virtual channel router has a more complex
control. A new control block, called VC allocator, is introduced in the router
architecture and a new packet processing stage, called VC allocation, is performed. The
new packet processing stage takes place between the two old stages, the routing stage
and the switch allocation stage. After the packet header is examined in the routing stage,
the packet goes in the VC allocation stage. In the VC allocation stage, the packet is
allocated a VC on the destination output port. Then, the packet goes in the switch
allocation stage to be allocated a crossbar connection.

While in a wormhole router crossbar connections are allocated on a packet basis
(for the duration of the packet transmission), in the virtual channel router crossbar
connections are allocated on a flit basis. After each transmitted flit the packet has to
compete again for a crossbar connection. That is because the output ports are time-
shared between several VCs. In fact, crossbar connections are allocated not to packets,
but to VCs. The switch allocator acts as the arbiter in Figure 3.5 and distributes the
bandwidth of the physical channels between the VCs.

The VC allocation is done by the VC allocator upon request from the input
controllers. In a virtual channel router every VC has an input controller. All input
controllers interface with the switch allocator, as in Figure 3.4, but they also interface
with the VC allocator. By allocating a VC to a packet, the VC allocator creates a
correspondence between the VC the packet has arrived on and the VC the packet will
depart on. This correspondence is stored as a router state for the duration of the packet
and is used to control the switch allocator. The switch allocator has to provide
connections between corresponding input and output VCs. These connections are
provided for a single flit transmission. How often they are provided determines the
transmission rate of the VCs, hence their bandwidth.

In a virtual channel router packets are allocated two types of resources – a VC and
bandwidth of an output port. The allocation of these resources is done respectively by
the VC allocator and the switch allocator. Compared to a wormhole router, a virtual
channel router decouples the channel allocation from the bandwidth allocation. This
allows the bandwidth distribution to be controlled without affecting the channel
distribution policy.

3.4. Resource allocation in a VC router

The Quality-of-Service (QoS) experienced by the network packet is to a greate
extend determined by the way in which network resources are allocated to packets. The
resources of a virtual channel network are the virtual channels and the physical channel
bandwidth allocated to the VCs. Here we explore the possibilities to make the allocation
of these two resources predictable such that the service quality can be guaranteed.

 50

We consider two types of network services – guaranteed services (GS) and best
effort (BE) services. The traffic that uses GS is guaranteed service quality for any
network condition. The service quality is measured in terms of communication
throughput and packet latency and the quality guarantees are given in terms of a worst
case bound for the throughput and latency. The quality provided by the BE services is
not guaranteed but depends on the current network conditions. However, the BE
services should provide fairness, which means that in any network condition all the BE
traffic is treated equally.

The quality of the network service is, in fact, the network behaviour seen from the
perspective of a network user. Consider a packet injected into the network by a network
user. Traversing its path from source to destination, the packet uses network resources,
i.e. VCs and bandwidth, provided by the traversed routers. The packet will experience
best service if it always and immediately obtains the full capacity of the resources it
requires for the time it needs them. However, because the network resources are shared
between all the traffic in the network, the packet often has to contend for resources.
Hence, the quality of the service the packet receives is determined by the presence of
resource contention along the path and by the way these contentions are solved. To
make the service predictable we must be able to control or predict these two factors –
the presence or absence of contention and the contention solving.

The presence or absence of resource contention is influenced by the traffic
distribution in the network and in time. While we do not have control over the traffic
distribution in time, which is the data generation process in the data sources, it is
possible to control the routes the traffic takes in the network by controlling the traffic
routing policies. Thus, traffic routing is an option to control the presence of contention.

How the resource contentions are solved is determined by the resource arbitration
policy. This is, whether the packet has to wait in a case of a conflict and, if so, for how
long. The resource arbitration is done by the router allocators, which we will examine
now in more detail. In a virtual channel router there are two allocators the VC allocator
and the switch allocator.

3.4.1. VC allocation

A route has input ports and output ports and one each port there are VC. We refer to
the VCs on the input ports as input VCs and to the VCs on the output ports as output

VCs. Packets enter the router on the input VCs and leave the router on output VCs. The
task of the VC allocator is to create a one-to-one mapping between input VCs and
output VCs for the purposes of packet traversal disallowing converging VCs.

When a packet enters a virtual channel router, it is first allocated a VC on an output
port. The procedure for that is the following. The input controller of the VC where the
packet has arrived sends a request to the VC allocator. Then the input controller waits
until the allocator grants the request.

The VC allocator receives requests from all input VCs, so it can receive up to pv
requests at a time. A packet may request any VC on any output port*. Hence, an output
VC can be requested by more than one packet and the VC allocator must arbitrate
between the requests.

* To reduce the implementation complexity, most routers exclude the possibility of forwarding a packet in the
direction it comes from. In our implementation we also do so. However, to avoid triviality, we do not consider
this option when explaining the resource allocation.

 51

To provide service guarantees, we must be able to provide and upper bound on the
time a packet waits until it is allocated a VC. One attempt in this direction is to
introduce traffic priorities. The GS traffic can be given a higher priority than the BE
traffic. Thus, whenever a GS packet competes with BE packets, the GS packet wins and
attains the requested VC first. While this scheme improves the service provided to the
GS traffic at expense of the service provided to the BE traffic, it does not provide a
bound on the VC allocation time for the GS traffic. A GS packet still may compete with
other GS packets, in which case the time for VC allocation is difficult to predict. The
allocation time depends on the number of competing packets, the number of arbitration
cycles before the packet attains the VC and the time the packets occupy the VC.

An upper bound on the VC allocation time can be provided by ensuring that no
contention occurs, in which case a packet is immediately allocated a VC. One option to
avoid contention is to provide that competing requests from different input VCs arrive
at different times. However, we do not have control over the packets arrival times and
this option is not feasible for our network. The other option to avoid contention is to
provide that an output VC is requested only by packets arriving on the same input VC.
Such a condition can be provided by appropriate traffic routing. Since it is possible to
control the traffic routing, this is a feasible option for our network.

When contention is avoided in all the routers traversed by the packet, the packet
will never find a VC occupied and will never wait. The allocation time per router is
known and the upper bound of the total allocation time along the path can be calculated.
To avoid contention for all the VCs traversed by a packet we use VC reservation. All
the packets from source to destination always follow the same path over reserved VC. It
is stipulated that the reserved VCs are not used for other communications.

The VC reservation is done at a higher system level by a central routing function
that finds routes for all the network traffic. The central routing function is a task running
in the system on a general purpose processor which acts as a central system authority.

The paths over VCs are reserved when an application is started. Usually and
application will need several paths for communication between its tasks running on
different PEs. We can see these paths as connections and hence the GS services are
connection oriented.

The VC reservation at higher system level does not instantiate the connection, but
only reserves VCs for it, providing that these VC will not be used for other
communications. The connections are instantiated by the PEs when the application is
started. When configured the PE received descriptions of the paths it has to use for
communication. Since we use source routing, these descriptions are directly used in the
packet headers. To open a connection a PE sends a packet header and to close the
connection it sends a tail. Thus, there is certain duality between a packet and a
connection when considering the GS services in our network. However, the negotiation
for the connection resources is done in advance at a higher system level. The resources
are permanently reserved for the connection, no matter whether it is opened or not.

The BE traffic is transported on VCs that carry only BE traffic. This VCs may be
shared between BE packets of many source-destination pairs. Hence, the BE packets
may encounter contention and their VC allocation time is not bounded. Whether a VC is
used for GS or BE traffic is decided centrally when the traffic routing is done.

In our router the VC allocator practically arbitrates only BE packets. The GS
packets are never arbitrated but directly allocated output VCs, because conflicts
between them never occur. The VC allocator consists of one arbiter per output VC [63],
thus pv arbiters in total. Each arbiter solves the conflicts between the requests that may

 52

arrive from all the input VCs, thus pv requests at maximum. Hence, each arbiter is of
size pv:1 – it has pv request inputs, of which at most one is granted at a time.

3.4.2. Switch allocation

After the packet has been allocated a VC on the destination output port, it moves
from the VC allocation stage to the switch allocation stage. In this stage the packet
competes for a crossbar connection to the output port. Since the output ports are shared
between the VCs, crossbar connections are allocated not for transmission of a whole
packet but only for transmission of a single flit. After each forwarded flit, the packet has
to compete for a crossbar connection again. Thus, the flits from the different VCs are
interleaved on the output port.

The rate at which a VC is granted a crossbar connection to transmit flits determines
the VC throughput and hence the throughput utilised by the packet traversing the VC. If
flits from separate VCs are interleaved over a physical channel, then the VCs receive an
equal share of the physical channel bandwidth. The share is inversely proportional to the
number of VCs currently forwarding flits. This number is bounded by the maximum
number of VCs on a physical channel. Therefore, the minimum throughput of a VC is
also bounded.

Crossbar connections are allocated to the VCs and their packets by the switch
allocator. The complexity and performance of the switch allocator depends on the
architecture of the virtual channel router. The symmetric architecture from Figure 3.6.a
requires a more complex switch allocator which performance is difficult to predict,
while the asymmetric architecture from Figure 3.6.b simplifies the allocator and makes
it predictable. We now explain the reasons for this dependency.

In the symmetric router architecture from Figure 3.6.a the VCs are multiplexed after

the input buffers and the crossbar is of size p×p. When allocating connections in this
crossbar we must consider two constraints implied by the architecture: i) an input port
can forward at most one flit at a time, ii) an output port can forward at most one flit at a
time. To satisfy the first constraint, the allocator needs one arbiter per input port to
select one among the possible v input requests. To satisfy the second constraint, the
allocator needs one arbiter per output port to select one of the possible v requests to this
output port. Remember that at this stage the VC allocation is already done and a one to
one correspondence between VCs on the input and output ports has been established.

The architecture of the resulting switch allocator is shown in Figure 3.7. It has two
arbitration stages – at the input ports and at the output ports. Each stage has p arbiters of
size (v:1). An arbiter has v request inputs and v grant outputs. Whether a request is
granted is indicated by activating the corresponding grant output as at most one grant
output can be active at a time. Besides the arbiters, the switch allocator contains a fully
connected switch controlled by the VC allocator that connects the corresponding
request/acknowledge lines of the input and output arbitration stage (this switch serves
only request/acknowledge signals and must not be confused with the router crossbar
switch that switches the data).

 53

Figure 3.7: Complexity of a switch allocator for the router architecture from Figure
3.6.a

Achieving high throughput and fairness in a switch allocator of this type has been
studied by McKeown [54]. He proposes the iSLIP allocator, which achieves fair
arbitration by using round-robin arbiters and employing a special synchronisation policy
between the input and the output arbitration stages. While the proposed allocator
prevents packet starvation and achieves high throughput, it does not guarantee equal
bandwidth distribution between the VCs. Thus, no prediction can be made about the
throughput allocated to a VC. Another switch allocation solution is the wrapped wave

front arbiter [28, 77]. This type of arbiter also prevents packet starvation, but it does not
allocate bandwidth fairly to VCs and no prediction can be made about the VC
throughput. We may conclude that the router architecture in Figure 3.6.a leads to a
complicated switch allocation which does not allow for achieving predictable bandwidth
allocation. Hence, service guarantees cannot be given.

Figure 3.8: Complexity of a switch allocator for the router architecture from Figure
3.6.b

In the asymmetric architecture from Figure 3.6.b, the VCs are connected directly to
the crossbar and VCs on a same input port can forward flits simultaneously. Hence, no
arbitration on the input ports is needed. Now the only constraint that must be taken into
account is that an output port can forward at most one flit at a time. The structure of the
switch allocator for this architecture is shown in Figure 3.8. Compared to the allocator

 54

in Figure 3.7, the input stage of arbitration is removed. Now only one arbiter is
responsible for the grant of a given request. The decision of an arbiter does not depend
on the decision of other arbiters. Each arbiter takes its own decision how to distribute
bandwidth between the packets. When round-robin arbiters are used, the packets are
served fairly, starvation is prevented and the physical channel bandwidth is equally
distributed between the VCs. Knowing the number of VCs that are used on an output
port, we can predict what throughput these VCs provide. Therefore, with the router
architecture from Figure 3.6.b we can have a predictable switch allocation only by
employing round-robin arbiters. This is the architecture we use for our router.

By combining predictable switch allocation and virtual channel reservation, the
services provided by a router are made predictable. A network built of such routers will
also be able to provide guaranteed services. In the following section we propose a
method for providing GS in such network.

3.5. Providing service guarantees at a network level

Consider a virtual channel network with K virtual channels per physical channel.
The physical channels are time-shared between the VCs on a flit-by-flit basis in a
round-robin fashion. Thus, the physical channel bandwidth is equally shared between
the VCs. Time slots are allocated only for VCs that have flits ready to be forwarded, the
idle VCs do not use timeslots. Therefore, bandwidth is allocated only for VCs that
currently transport data.

Let the network be defined as a graph I=(N,C), where the graph vertices represent
the network nodes and the edges represent the physical channels. All the physical
channels have the same bandwidth b. If on a channel ci there are ki VCs currently
transmitting data while the remaining K-ki VCs are idle, then each of the ki VCs is
guaranteed a throughput of:

(3.1)

i

i
k

b
TH =

This is the worst case throughput provided by the VCs. Whatever traffic load is applied
to these ki virtual channels their throughput will not fall below THi.

At a network level guaranteed services are provided on a connection basis. A
connection is a path over the VCs between the source and destination nodes. The VCs
traversed by the path are reserved and not used for other communications. Let a
connection P traverse a sequence of H physical channels <c1, c2,… cH>. The minimal
throughput of the connection, THP, is determined by the VC with the minimal
throughput on the connection path.

(3.2)
[]

{ }i
Hi

P THTH
,1

min
∈

=

Assume the network is requested to provide a connection with a minimal throughput
THR. According to (3.2) this connection must traverse only channels ci where the
throughput THi is greater than or equal to THR:

(3.3) iR THTH ≤

Substituting (3.1):

 55

(3.4)

i

R
k

b
TH ≤

or

(3.5) R

R

i k
TH

b
k =








≤

Equation (3.5) provides a selection criterion for the channels traversed by the
connection. To guarantee that the minimal connection throughput is at least THR, it must
be provided that the connection traverses only physical channels where at most kR VCs

are occupied. kR is a positive integer in the range 1≤kR≤K. If in (3.5) kR = 0, this means
that the requested throughput exceeds the capacity of the physical channel (b<THR) so
this throughput cannot be provided. The best we can do is to set kR=1 and guaratee
throughput b. If in (3.5) kR>K, this means that the requested throughput is less than the
granularity at which throughput is provided and we must fix kR=K. The actual minimum
throughput bound of the provided connection is:

(3.6)

R

P
k

b
TH =

Distributing physical channel bandwidth between the VC by means of round-robin
arbitration makes the VC throughput predictable, but also implies that all VCs on the
same physical channel guarantee equal throughput. While simple, this approach is not
the most efficient. For example, two GS connections, one of high throughput and one of
low throughput, with aggregated throughput that is less than the physical channel
bandwidth, may not be fit on the same physical channel simply because they can be
given only equal throughput guarantees. The bandwidth allocation can be made more
flexible by employing weighted round-robin arbitration. A weighted round-robin arbiter
distributes bandwidth between the VCs proportionally to weights assigned to the VCs.
The weights can be chosen such that bandwidth is allocated more accurately to the
throughput requests. However, introducing weights will complicate the arbiters and the
router organisation.

The latency T of a packet traversing a GS connection is the sum of two components
[27]: head latency Th and serialization latency Ts. The packet head latency is the time it
takes for the packet head to reach the destination, while the serialization latency is the
time required for receiving the entire packet body at the destination, after the packet
head has reached it. The head latency in our network is the aggregated time the header
spends in the routers waiting for VC allocation. Since the VCs used by the GS
connection are reserved and not used for other communications, the packets traversing
the connection do not compete with other packets and VCs are allocated to them
immediately. A GS packet head spends in a router a time tr, which depends only on the
router design and does not include waiting. This time is equal for all routers; it is the
time needed to allocate a free output VC and move the head to the next router. The head
latency for traversing a connection of H hops is then Th=H*tr. The serialization latency
Ts depends only on the packet length L and the connection throughput THP, Ts=L/THP.
The maximal latency of a packet of size L on a H hop connection with minimal
throughput bound THP is then:

 56

(3.7)

P

r
TH

L
tHT += *max

3.6. System level support

Our approach for providing guaranteed services relies on VC reservation done at a
system level. Guaranteed services are provided by means of GS connections, which are
paths reserved over the VCs in the network. To provide a GS connection with a
throughput THR, the system searches the network for a path over the VCs from source to
destination node, such that all VCs satisfy (3.5). Thus, (3.5) is used as a path search
criteria. The system reserves the VCs used in the path by changing their state from
“free” to “occupied”, so these VCs are not considered in the next path searches. When
the GS connection is not needed anymore the path and its VCs are released and the VCs
state is changed again to “free”.

The path search process is referred to as routing and is performed by a routing
function. Searching for a path, the routing function needs to know the state of all VCs in
the network. Thus, it requires global information about the network state. This
information can either be acquired every time it is needed or it can be stored centrally.
To avoid traffic and time overhead, the information is stored centrally for our system.
The routing function is discussed in more detail in Chapter 5.

Routing

function

Application

Network

state

R R R

R R R

R R R

PE PE PE

PE PE PE

PE PE PE

Routed

connections

System level

supports

Computing

Platform

Figure 3.9: Starting an application on the system architecture

The routing function is called every time a connection is created. Since this adds
time overhead, it is inefficient or even impossible to provide a new connection every
time a GS packet is sent. Instead, connections are provided at a coarser communication
level every time an application is started or changed, as depicted in Figure 3.9. The
application is represented as a set of tasks that run on different processing elements and
communication between the tasks. When the application is started, the routing function
is called to provide GS and BE connections for the inter-task communications. These
connections are then used for the duration of the application, which for the baseband

 57

processing and multimedia applications considered in our system can be from seconds
to hours. When the application is stopped, the connections it uses are released.

The routing function returns a path description in the form of a VC sequence to be
traversed. In our network this description is used as a network address. We employ
source routing which means that the network address defines not only the destination
node, but also the path that is taken to reach it. The path descriptions of the connections
used by an application are loaded as network addresses in the PEs where the application
tasks run. A task uses the addresses given to it to send data to the other application
tasks.

3.7. Simulations

To validate VC reservation as an approach for providing service guarantees, we
performed a cycle-accurate simulation of a mesh network. The network size is 6-by-6
nodes. It is large enough to provide realistic traffic conditions (interferences between
data streams) while it still keeps the simulation time acceptable. The simulation is
performed in SystemC and takes a few days. The simulated network consists of routers
that model the behaviour of our real router implementation for which the main ideas
have been established now. For a detailed description of the implementation see Chapter
4; here we summarise the main parameters only. The router parameters are chosen to
provide sufficient performance for the simulated traffic at acceptable router area cost.
The network channels are 16 bit wide. A flit is a single word size and is transmitted
over a physical channel in a single cycle. There are four VCs on a physical channel. The
FIFO buffers are two words deep and can store two flits. The maximum time tr for
processing and forwarding a packet head for the GS packets is 4 clock cycles.

The latency of a GS packet is expressed in terms of clock cycles in the following
way. If w is the physical channel width in bits and Tc is the clock period, then the
physical channel bandwidth is b=w/Tc. From (3.6) we then get that THP=w/(kR*Tc).
Substituting in (3.7), the maximum latency of a packet of length L bits on a channel
with guaranteed throughput bound THP and length H hops is

(3.8) cR Tk
w

L
HT 








+= 4max

For the simulation we assume a clock period Tc=3 ns corresponding to a router
operation frequency of 333 MHz, which is in the operating range of our design (see
Chapter 4). The physical channel bandwidth is then b=5.333 Gbit/s.

3.7.1. Setup

We simulate a mesh network of 6-by-6 nodes with a traffic load that mimics the
traffic generated by streaming applications. Streaming applications typically have a
simple pipeline structure – a number of tasks connected in a pipeline by communication
channels. To construct a traffic pattern that models the pattern in a running system we
use a ring graph, which can be thought of as a representation of serially connected
streaming applications. The graph vertices represent application tasks and the graph
edges represent the communication channels between the tasks. The number of tasks in
the ring graph is 36, the same as the number of nodes in the simulated network. We
randomly scatter the tasks over the network nodes, as each task is placed on a separate

 58

node. The edges in the so mapped ring graph define the communication pattern used in
the simulation. We consider random scattering to be the worst case strategy for running
tasks on a multiprocessor system. In a real system the application tasks are placed on
PEs such that the traffic locality is maximized, which leads to better traffic conditions.

The network nodes, where the tasks are mapped, do not do processing but only
serve as source and sink of data. Each node generates both types of traffic, GS and BE,
according to the constructed communication pattern. Thus, between two communicating
nodes there are two communication channels, one GS channel and one BE channel.
While the ring pattern is a realistic model for GS traffic, probably it is not the most
realistic for BE traffic. Currently we do not know what traffic pattern is realistic for the
BE traffic because it depends very much on the application specifics, the type and the
placement of the PE in the system, etc. However, the purpose of the BE traffic in this
simulation is to create heavy traffic conditions and to disturb the GS traffic. We choose
to let the BE traffic follow the GS traffic pattern, so that each GS connection is
accompanied by a BE connection, both following the same path. Thus, the GS and the
BE traffic is concentrated on the same paths, maximizing the interference between the
two traffic types.

During the simulation the intensity of the GS traffic is kept constant while the BE
traffic intensity is gradually increased to the point of network saturation. The aim is to
show that the guarantees given by the GS connections are not violated by any traffic
condition. The traffic conditions are changed by changing the BE traffic intensity.
During the simulation statistics are collected for the packet latencies, both GS and BE.

All network nodes generate traffic of same amount and granularity. For the GS
traffic we use the traffic characteristics of a real high-throughput baseband processing

application – a HiperLAN/2 receiver [67]. Every 4 µs a node generates a new packet
with a 256 Bytes payload. This equals 512 Mbit/s average throughput per node or 18.4
Gbit/s aggregated throughput for the 36 nodes in the system. The BE traffic consists of
packets with 10 Bytes payload. The BE packet generation period is gradually reduced in
order to increase the BE traffic intensity.

In our simulation setup we guarantee that GS packet latency is less than 1/3 of the
GS packets generation period. In that way a PE spends at most 1/3 of the time receiving
packets, at most 1/3 of the time transmitting packets and uses the remaining time for
processing. To guarantee that latency we provide GS connections with appropriate
throughput. We do that by routing the communication channels according to the criteria
discussed in Section 3.5.

To achieve a GS packet latency of 1/3 of the generation period (4µs/3=1.3 µs), the

GS connections must have a throughput of at least 256B/(4µs/3)=1.536 Gbit/s. This is
the throughput THR we request for the GS connections. It is found from (3.5) that kR=3,
hence a GS must traverse only physical channels where at most 3 VCs are used. The
maximal message distance in a 6-by-6 mesh network is Hmax=10 hops. According to

(3.8) the maximal latency of a GS packet is 424 clock cycles or 1.272 µs, which is less

than the required 1.3 µs. To provide the requested throughput, we route the GS and BE
connections such that no more than three VCs are used on the physical channels (kR=3).

3.7.2. Results

The simulation results are presented in Figure 3.10. The graph there illustrates how
the latency of the GS and BE packets depends on the offered BE load. The offered BE
load is given per PE, all PEs generate the same amount of data. The packet latency is

 59

given over all connections in the network. For the GS packets we give the maximal and
the mean latency. The horizontal line represents the 424 cycle latency guarantee for the
GS packets.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

100

200

300

400

500

600

BE load per PE [fraction of channel capacity]

L
a
te

n
c
y
 [

c
y
c
le

s
]

Guarantee

GS mean

GS max

BE mean

Figure 3.10: Packet latency vs. offered BE load; buffer size of 2 flits

When the offered BE load is low, the latency of the GS packets is smaller than the
guaranteed. The reason is that the GS traffic utilizes the bandwidth not used by the BE
traffic. The latency of the GS packets is higher than the latency of the BE packets
because the GS packets (256B) are longer than the BE packets (10B). The GS packets
latency is dominated by the serialization latency. With the increase of the BE load, the
latency of the GS packets also increases and at some point the GS packets maximal
latency reaches a point of saturation. A further increase of the BE load increases the GS
packets mean latency, but not the maximal latency. The latency of a GS packet never
exceeds the guaranteed latency. The maximal latency of the GS packets never reaches
the latency bound because the bound is given for worst case conditions, assuming all the
kR VCs constantly transmit data. In our setup this is not the case – GS packets are
transmitted 1/3 of the time.

The network saturates for BE traffic when the offered BE load reaches about 0.09
of the channel capacity. This throughput is rather low, but it is enough to handle the
amount of BE traffic generated in our system. The traffic generated by the HiperLAN/2
receiver, and by baseband processing applications in general, is dominated by the GS
traffic. About 90% of the generated traffic consists of GS streams and only 10%
consists of fine granularity BE messages. For the HiperLAN/2 receiver, this can be
estimated to an average of 512 Mbit/s GS traffic and 57 Mbit/s BE traffic per PE. Thus,
the expected BE traffic is only 0.01 of the channel capacity b=5.333 Gbit/s or less then
15% of the BE saturation throughput in Figure 3.10. This means that the network will

 60

operate in the left most part of the graph and the low saturation throughput for the BE
traffic does not cause problems for the considered applications.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

100

200

300

400

500

600

BE load per PE [fraction of channel capacity]

L
a
te

n
c
y
 [

c
y
c
le

s
]

Guarantee

GS mean

GS max

BE mean

Figure 3.11: Packet latency vs. offered BE load; buffer size of 4 flits

The same simulation was repeated for a network with a buffer size of 4 flits. The
results are shown in Figure 3.11. It shows that enlarging the buffers mainly results in an
increase of the BE saturation throughput, from 0.09 to 0.12.

3.8. Comparison

Table 3.1 and Table 3.2 compare our virtual channel network-on-chip (VCNoC)
with the NoCs reviewed in Chapter 2 which provide GS and BE services. Table 3.1 and
Table 3.2 are copies of Table 2.2 and Table 2.3 extended with a row describing our
VCNoC. The performance figures will be discussed in Chapter 4.

Table 3.1 compares the techniques employed by the networks. The MANGO
network is the solution which is closest to our VCNoC. It employs virtual channel flow
control and uses similar approach for providing service guarantees. The main
implementation difference and certain advantage for MANGO is that it is implemented
using asynchronous techniques, in contrast to our synchronous implementation. Thus
MANGO shows that it is possible to design a virtual channel network using
asynchronous design techniques.

The main functional difference between MANGO and VCNoC is in the way in GS
connections are configured. In MANGO, the configuration of a GS connection is done
by sending explicit configuration BE packets to all the routers along the GS connection.
The same approach is used by the network of Wolkotte. Its main drawback is that the
connection configuration time cannot be guaranteed because BE packets are used. By
contrast, in our network a connection is configured by the source node simply by

 61

injecting a packet header in the network. The header follows a preliminary reserved path
to the connection destination node and the time it takes to reach it is bounded and
guaranteed.

Table 3.1: Comparison of employed network techniques;
NA=Not Applicable, VCNoC=Virtual Channel NoC

NoC
Provided

services
Topology Flow control Routing

Area

[mm2]

F

[MHz]

Tech.

[mm]

Wolkotte GS, BE
2-D mesh,

Ring

Circuit switching,

cut-through

(serial)

NA 0.05 1000 0.13

Ǽ thereal

Distrib.
GS, BE Any

TDM,

Wormhole

contention-free

routing, source routing
0.24 500 0.13

Ǽ thereal

Centr.
GS, BE Any

TDM,

Wormhole

contention-free

routing, source routing
0.17 500 0.13

Ǽ thereal

GS only
GS Any TDM

contention-free

routing
0.03 1000 0.13

Nostrum GS, BE 2-D mesh TDM
contention-free

routing, diflection
-- -- --

MANGO GS, BE grid-type Virtual channels source routing 0.19 515* 0.12

In Nostrum GS connections are also opened by the source node, but guarantees can
be claimed only during the network initialization when the system is started. In our
network GS connections can be opened and closed at run-time.

In Ǽthereal, like our in network, the configuration is done by GS packets and hence
the configuration time can be guaranteed.

Table 3.2: Comparison of network characteristics;
VCNoC=Virtual Channel NoC

NoC GS approach

Applicable

in GALS

systems

GS connection is

configured by

GS

packetisation

required

Combining

GS and BE

Wolkotte
Circuit

reservation
yes BE packets yes

Separate

networks

Ǽ thereal
T ime-slot

reservation
no GS packets yes

Separate

router parts

Nostrum
Time-slot

reservation
no The source node yes Single router

MANGO
VC

reservation
yes BE packets no

Separate

router parts

VCNoC
VC

reservation
yes The source node No Single router

Besides the functional differences between MANGO and our VCNoC there are also
architectural differences. In the MANGO network the router consists of two separate
parts, one that processes the BE traffic and one that processes the GS traffic. A similar
router structure is used in the Ǽthereal network. With such a router organization the GS
and BE traffic use separate router resources, thus the total amount of needed resources
increases. For example, in the MANGO router the number of VCs is doubled and
divided in two sets, one set used for GS and one for BE traffic. The division of

 62

resources also requires that a choice is made at design time about the amount of
resources dedicated to both traffic types.

Our network router does not have separate parts for the different traffic classes.
Both types of traffic are processed by a single routing solution and use common
resources. Thus the total amount of resources is minimised. Whether a resource is used
by GS or BE traffic is decided dynamically at run-time. There is no difference between
the GS and BE traffic at router implementation level. Hence, no choices based on traffic
specifics have to be made at design time. The amount of resources allocated to different
traffic types is decided at run-time and can be dynamically adapted to the application
demands.

3.9. Conclusion

In this chapter we present a solution for a virtual channel network-on-chip
(VCNoC) able to support two traffic classes - guaranteed service (GS) and best effort
(BE) traffic. We propose a router architecture and a resource reservation scheme, which
in combination enable our network to provide GS as well as best effort services. Our
network is one of the first VCNoC providing GS services and one of the few to provide
an upper bound on the time for opening a GS connection. The router architecture we
propose is unique with that it supports GS and BE traffic in an integral way instead of
combining two separate architectural solutions.

Our VCNoC is applicable in systems where the GS traffic is dominated by intensive
streams and the BE traffic is composed mainly of low intensity and fine granularity
messages. This is the type of traffic expected in multi-processor system-on-chip for
streaming applications (communication and multimedia applications). Compared to
other networks, our network implies fewer restrictions on the traffic injected in it. Data
streams do not need to be split into packets and later reassembled again, but are directly
transported.

The resource reservation scheme we propose for providing GS services requires a
central system organisation. This is the system organisation required also by the other
proposed NoC solutions.

 63

Chapter 4

Implementation*

In this chapter we discuss design and implementation issues

of an asymmetric virtual channel router architecture. We

propose an implementation that makes the implementation

area competitive with the area and performance of the

symmetric architecture.

4.1. Introduction

In Chapter 3 we choose an asymmetric architecture for a virtual channel router
instead of the symmetric one, because the asymmetric architecture simplifies the router
arbitration and makes the router performance predictable. However, the asymmetric
architecture requires a larger crossbar switch and for that reason it is usually regarded as
an area inefficient router solution. Since the network-on-chip (NoC) implementation is
area constrained, it is important to clarify what the implementation area cost of a router
is and to select the router parameters such that the required network performance is
provided at a minimal area cost.

This chapter deals with the implementation of our network router. We simplify and
optimise the implementation of the asymmetric router architecture to make it more area
efficient. Firstly, we restructure the router implementation in order to avoid overlapping
functionality and to reduce the router size. Secondly, we propose a simplified
implementation for the VC allocator. The synthesis results reveal that the area and
performance of the asymmetric architecture are competitive with those of the symmetric
architecture (also implemented by us).

We also explore the scalability of the proposed architecture by comparing synthesis
results for different combinations of route parameters, e.g. buffer size, number of VCs,
and channel width. We discuss how the router performance and implementation area
depends on the different parameters.

4.2. Implementation details

In this section we present implementation details of our virtual channel NoC
(VCNoC). We discus the implementation of the asymmetric router architecture and
propose an optimised implementation that minimises the area of a virtual channel
router.

* Major parts of this chapter have been presented at the IEEE International System-on-Chip Conference [5]
and at the EUROMICRO Symposium on Digital System Design [1].

 64

4.2.1. Flit and packet format

The basic unit of information recognized by virtual channel flow control is the flit.
Flits in our network are a single data word. The flit format is shown in Figure 4.1. It
consists of w bits of transported data and a two-bit field coding the flit type. The flit
types are: Header flit (HF), Data flit (DF), Command flit (CF) and Tail flit (TF). The
header and the tail flits denote respectively the beginning and the end of a packet, while
the data and control flits carry the packet payload. The command flits utilize the fourth
state of the two-bit field for flit type. The network does not distinguish between data
and control flits; it treats both as flits that transport payload. In this way the network can
transport two types of data, for example data and commands, together in a packet
practically at no additional cost. From our experience, we find this network feature
useful and convenient to support the higher levels of the system organization.

Figure 4.1: Flit format

Our network transmits a flit on a physical channel in a single clock cycle. As
discussed in Chapter 3, making the flit longer is advantageous when the router operation
rate is slower than the channel operation rate and high channel utilization is a primary
goal. For networks of such a small scale like the on-chip networks this is not the case.
Since the router implementation is fast and the network channels are inexpensive, high
channel utilization is not a primary goal.

Data is transported over the network in packets constructed of flits. A packet
consists of three parts: header, body and a tail. The packet header carries routing
information. The packet body carries the transported data, or the payload. The packet
tail just indicates the end of the packet. The packet is constructed of a sequence of flits
of different type. The permitted flit sequence constructing a packet is:

Packet ::= Header Body Tail
Header ::= HF

+

Body ::= (DF|CF|HF)
*

Tail ::= TF

The packet header typically consists of multiple header flits. The number of header flits
equals the number of routers traversed from source to destination. The header flits
configure he traversed routers. In each router the first header flit of a packet is
examined, routing information is extracted from it and the flit is discarded. The routing
information determines on which output VC the packet is forwarded. Thus, the header
flit adds one more VC to the packet path. The routing information must lead the packet
to its destination. The flits arriving in the router after the first header flit, just follow the
path. The packet body may contain any flit type except a tail flit. The tail flit terminates
the packet and releases the reserved path. The packet body may contain any number of
flits, including no flits at all, in which case no payload is transported.

 65

4.2.2. Channel interface

The physical channels are the medium on which flits are transferred between the
routers. The channel interface between two routers is presented in Figure 4.2. Let K be
the number of VCs on a physical channel and w be the data width. The flits are
transported on a unidirectional channel of a size 2+w bits which we call the Flit Bus. On
which VC the current flit is being transmitted is indicated by the signal VC_sel of size

log2K bits. The signal Valid indicates whether a flit is transmitted in the current clock
cycle. The signal Ready goes in reverse direction. It returns the flow control credits
from the receiving router to the transmitting router. The credits are carried in parallel.
The signal consists of K bits, each bit corresponding to a VC. Each bit indicates whether
there is free space in the receiving FIFO buffer. By sending the credits in parallel
instead of coding and sending them sequentially on a narrower channel, we simplify the
design avoiding the coding and decoding logic. We speed up the credit regeneration
process, at the cost of utilizing the larger amount of the available wires. The total
amount of wires needed to build the channel is:

(4.1)   12log_ 2 ++++= wKKwiresnum

For example, with four VCs (K=4) and 16 bit data width, the number of wires needed to
build the interface is 25.

The presented channel interface is parallel and unidirectional. There are two such
channels between two neighbouring routers – one channel in each direction – to provide
full-duplex communication.

Figure 4.2: Channel interface between two routers (K = number of VCs, w = data width)

An example timing diagram of the channel interface is given in Figure 4.3. It shows
a number of flits sequentially transmitted over the channel. It is assumed that there are
four VCs per physical channel. In cycle i, Flit1 is transmitted on VC 0. In that cycle the
signal Ready indicates that there is free space in all VC FIFOs. Since enabled by the
Valid signal, the flit is written in the FIFO of VC 0 on the rising edge at the end of the
cycle. In the next cycle, i+1, another flit is transmitted on VC 0. In cycle i+2, the Ready
signal indicates that there is no free buffer space in the FIFO of VC 0. The Valid signal
is deactivated and no flit is transmitted in this clock cycle. In cycle i+3 the buffer space
is available again and Flit 3 is transmitted on VC 0. In cycle i+4 the buffer of VC 0 is
full again, but a flit is transmitted on another VC for which buffer space is available, the
VC 3.

 66

Figure 4.3: An example timing diagram of the channel interface

4.2.3. Input controller

For every VC at the router inputs there is a FIFO buffer and control logic –together
they form an input controller (see Figure 4.4). There is an input controller for every VC
at every input port of the router. When a flit arrives on an input port, it is demultiplexed
to the respective VC and processed by its input controller. The input controller buffers
the incoming flits and examines them. It stores the current VC state and interfaces with
the VC allocator and the switch allocator to requests the resources required for
forwarding the flits – a VC and a switch connection.

The functionality of our input controller is closely coupled to the functionality of
the VC allocator and the switch allocator. To understand the complete role the input
controller plays in the router operation, the router VC and switch allocation needs to be
known. For that reason here we only introduce the architecture of the input controller
and part of its functionality, while the full functionality will become clear later when the
allocation is presented.

The architecture of our input controller is presented in Figure 4.4. The controller
consists of a FIFO buffer, control logic Ctrl, two registers ID and dest and a comparator
cmp. The control logic implements the main functionality of the input controller and
controls the VC state. The two registers and the comparator take a part in the VC
allocation and the switch allocation; their function will be explained later in Section
4.2.4.

Upon its arrival a flit is stored in the FIFO. The FIFO sends back information to the
previous router whether there is free buffer space available; this is the signal Ready[i],
which directly drives one bit of the signal Ready in the channel interface. If a flit is
received when there is no free buffer space, the flit is dropped. However, during normal
operation the flow control does not allow flits to be sent when there is no free buffer
space in the receiving router.

 67

de
st

ID

Figure 4.4: Architecture of an input controller

The head of the FIFO (its output) is constantly monitored by the control logic Ctrl.
The control logic consists of a Finite State Machine (FSM) and some glue logic. The
state diagram of the FSM is shown in Figure 4.5. Its states correspond to the possible
VC states that basically repeat the stages of packet processing. After reset the VC is in
an Idle state, which indicates that no packet is using the VC and the VC is free. In that
state the FSM monitors the type of the flits at the FIFO head, waiting for a header flit to
denote the beginning of a packet. All the flits of type different from HF, i.e., DF,CF,TF,
are discarded from the network. The discarded flits are read out of the FIFO without
being forwarded. The discarding prevents the VC from blocking when incorrect packet
formats are received. When the first header flit appears at the FIFO head, the FSM
moves to the next state VC allocation (VC alloc). At the same time the data carried by
the header flit is loaded in the ID and the dest registers and the header flit is discarded.

Figure 4.5: A virtual channel state diagram

The format of a header flit is shown in Figure 4.6. Its data part contains three fields.
The fields p_sel and v_sel contain respectively the number of the output port and the
VC on which the packet has to be forwarded. These fields are loaded into the
destination register dest. They appear directly on the output signals P_SEL and V_SEL
showing the allocators where the packet has to go. The size of the field v_sel and the

 68

signal V_SEL is log2K bits. The size of the field p_sel and the signal P_SEL is log2P
bits, where P is the number of router output ports. For our router with K=4 and P=5 the
size of the fields v_sel and p_sel is respectively 2 and 3 bits. The field ID contains an
identifier, which is loaded in the ID register of the input controller. The identifier takes
part in the VC allocation and its exact function is explained in Section 4.2.4.

Figure 4.6: Header flit format

While it is in VC allocation state, the input controller neither forwards nor discards
flits from the FIFO. Instead, it waits until the VC allocator allocates the virtual channel
v_sel on output port p_sel. The input controller interfaces with the VC allocator through
the signals VACK and VHOLD. The signal VACK notifies the input controller that the
requested VC (selected by P_SEL and V_SEL) is currently free. The signal VHOLD is
activated to indicate that the input controller currently holds the requested VC. The two
signals together with the comparator cmp and the register ID take part in the VC
allocation. Details about the VC allocation are given in the following subsection.

When the VC is allocated, the FSM moves to the next state Forwarding (Fwd). In
the Forwarding state, the input controller forwards all the flits arriving in the FIFO to
the VC selected by the content of the destination register dest (virtual channel v_sel on
port p_sel). The controller interacts with the switch allocator through the signals SREQ
and SACK. The request signal SREQ indicates that there is a flit in the FIFO to be
forwarded. The switch allocator responds with the acknowledge signal SACK indicating
that a crossbar connection is allocated and the flit can be forwarded in the current clock
cycle. The acknowledge signal is issued only when there is free buffer space in the next
router.

In the Forwarding state the control logic monitors the type of the flits being
forwarded, waiting for a tail flit. When a tail flit is forwarded, the FSM moves to its Idle
state waiting for the next packet.

4.2.4. VC allocator

Figure 4.7 presents a straightforward implementation [63] of the VC allocator as
discussed in Section 3.4.1. The allocator operates as follows. When a packet arrives in
an input controller i the controller activates its signal REQ[i] to request a VC on an
output port. Which VCs is requested is indicated by the signal SEL[i]. The VC allocator
receives the request and demultipexes it to the requested output VC. At each output VC
there is an arbiter Aj that arbitrates between the possible multiple requests (up to pv).
Hence, as shown the allocator contains pv demultiplexers of size 1:pv and of pv arbiters
of size pv:1 (one of pv). However, Figure 4.7 does not show all the details of the VC
allocator. In addition to what is shown, an acknowledge signal must be returned
(multiplexed back) for each request and the arbiters must consider the current state of
the output VCs – whether they are occupied of free. Hence the VC allocator is even
more complex than what is shown in Figure 4.7.

 69

A
pv

(p
v
:1
)

A
1

(p
v
:1
)

A
1

(p
v
:1
)

A
1

(p
v
:1
)

Figure 4.7: A straightforward implementation of a VC allocator

Since designed for the worst case, the arbiters are rather large – they arbitrate over
the maximum of pv requests. All the arbiters together operate on (pv)2 request signals in
total. Out of these signals, at most pv can be active at the same time. For example, in a
router with 5 ports (p=5) and 4 VC (v=4) only 20 request signals out of the total 400 can
be active simultaneously. Therefore, the implementation shown in Figure 4.7 contains
redundancy.

We propose an alternative implementation that reduces the redundancy and
respectively the complexity of the allocator. In contrast with the straightforward
implementation, we avoid the large arbiters at the output VCs. Instead, the arbitration
takes place in the input controllers. Each input controller contains a comparator and a
register named ID (see Figure 4.4). These are the additional components needed to
perform the arbitration. When a new packet arrives, the ID register is loaded, as
described in section 4.2.3, with an identifier. We guarantee at a higher system level that
the packets competing for the same output VC have different identifiers. Which VC is
requested is indicated by the signals P_SEL and V_SEL of the input controller. The
signal VACK to the input controller indicates whether the requested VC is free. In the
router there is a central counter that runs constantly. Its current value is supplied on
input Arb_cntr of all input controllers. When VASK signals that the requested VC is
free, the input controller compares the counter value with the ID identifier. If the
comparison is successful, the controller assumes that it wins the arbitration and that the
output VC is allocated to it. The controller indicates this decision by activation the
signal VHOLD after which it proceeds with the packet forwarding. The signal VHOLD
stays active until the whole packet is forwarded and the output VC is released.

The uniqueness of the identifiers guarantees that only one of the controllers
competing for the same VC assumes that it wins the arbitration and activates its
VHOLD signal. Hence, conflicts are avoided. The counter is sampled when the
requested VC becomes free and in general the counter value is non-deterministic at that
time. Hence, no preferences are given to any of the competitors and the arbitration is
fair. It is possible, although with very small probability, that a packet has a bad luck and
does not win the arbitration for a long time. Such situation is acceptable for the BE
traffic since no guarantees are given. For the GS traffic such situation never occurs
because no VCs are shared and arbitration is never needed.

 70

It may happen that at the moment when the requested VC becomes free the counter
value does not equal any of the packet IDs. In that case no VC is allocated at the first
clock cycle, but since the counter value increments constantly with the clock, in several
clock cycles it will reach some of the ID values and the VC will be allocated. If the
counter is n bits long, the VC will be allocated in at most 2n clock cycles. To provide
that all ID values will be reached by the counter, the ID size must be less than or equal
to the size of the counter. Because of the requirement for uniqueness, the size of the ID
determines the maximal number of packets that may be competing for the same VC.
Thus, the size of the ID is a trade-of between the maximal number of BE paths that can
share the same VC and the maximal time for VC allocation (excluding waiting). Our
experience shows that a 2 or 3 bit identifier satisfies the needs for VC sharing. When the
identifier is two bits long, each input controller is equipped with a two bit ID register
and a two bit comparator to perform the arbitration. Their complexity is less than the
complexity of the arbiters in the straightforward design, discussed earlier. The worst
case time for VC allocation is 4 cycles.

The externally loaded unique identifiers can be avoided by numbering all the input
controllers and using the controller number instead of identifiers. However this will
increase the worst case time for VC allocation to pv clock cycles.

To complete the VC allocator design, it remains to show how the signals VACK to
the input controllers are generated. The signal VACK returned to an input controller
indicates whether the VC selected by the controller signals P_SEL and V_SEL is
currently free. The VC is free when none of the requesting input controllers has an
active VHOLD signal.

The signals VHOLD from all input controllers are demultiplexed to the
corresponding output VCs selected by the signals P_SEL and _SEL, in the same way as
in Figure 4.7 the signals REQ[i] are demultiplexed to the VCs selected by the signals
SEL[i]. At each output VC, instead of an arbiter there is an OR element that logically
OR’s the VHOLD signals. These are the VHOLD signals of all input controllers
selecting that particular VC. If none of these signals is active, then the VC is free. The
inverted output of the OR element is then the VACK signal. It is multiplexed back to
the input controllers requesting the VC.

In the input controllers, arbitration takes place only when the VACK signal is
activated, showing the requested VC is free. This happens only when all input
controllers requesting the same output VC have their VHOLD signals deactivated. Since
in a clock cycle only one of these controllers can win the arbitration, only one of their
VHOLD signals can become active in a clock cycle. Activating one of the VHOLD
signals deactivates the VACK signals and ends the arbitration until the output VC is
released again and the VHOLD signal is deactivated. Therefore, at most one input
controller may attain the VC at a time and conflict free arbitration is guaranteed.

4.2.5. Switch allocator

In Chapter 3 we chose the asymmetric router architecture which for ease of
reference we show again in Figure 4.8. The architecture consists of three main blocks a
VC, allocator, a switch allocator and a crossbar switch. (Besides that each input VC has
an input controller, but for picture clarity we do not show them.). All the three blocks
perform massive signal switching. As we saw in the previous section, the VC allocator
contains a switch of size (pv)2 for all the signals VACK and VHOLD. The switch
allocator (see Figure 3.8) also contains a switch of size (pv)2 for the signals SREQ and

 71

SACK. The crossbars switch is of size p2
v and switches data from input to output ports.

All this switching is mainly controlled by the signals P_SEL and V_SEL from the input
controllers selecting where the packets are forwarded. Hence, we can expect a repeated
functionality in the switching circuits in the three blocks.

Crossbar
switch
(pv p)

OUT 0

Switch
allocator

OUT 1

OUT 2

OUT 3

OUT 4

IN 0

IN 1

IN 2

IN 3

IN 4

VC
allocator

Figure 4.8: Selected router architecture

The three block are also closely functionally connected as they hierarchically
control each other as seen in Figure 4.8.. The VC allocator controls the switch allocator,
enabling only packets with already allocated VCs to be served. The switch allocator
controls the crossbar switch, determining only conflict free configurations.

Because of the repeated functionality in the three blocks and because of the tight
interface between them, it may be expected that if implemented as separate blocks like
in Figure 4.8, the design will become inefficient in terms of area. Instead, we propose to
integrate the large switches in the VC allocator, the switch allocator and the crossbar
switch into a single switching structure. Thus we avoid the repeated functionality and
the complex interfaces between the blocks.

The router structure we implement is shown in Figure 4.9. The figure shows only

the control paths, while the data paths are omitted for clarity. The switching parts of the
VC allocator, the switch allocator and the crossbar switch are merged in a single
switching unit. The round-robin arbiters (RRA) of the switch allocator are shown
separately outside the switch – one arbiter per output port. The switching unit has a
crossbar structure. The rows in the crossbar correspond to input VCs and are connected
to the input controllers. The columns in the crossbar correspond to output ports and are
connected to the RRAs and the output ports of the router. Thus, the crossbar has pv
rows and p columns.

 72

Figure 4.9: Implemented router structure. RRA – round-robin arbiter

Each cross point in the crossbar connects an input controller to an output port. The
cross points, however, are not simple switching elements but contain also some control
logic. Let us assume that there are four VCs per port. The structure of the cross point
then is shown in Figure 4.10 and Figure 4.11. The two figures present the part of cross
point functionality supporting the switch allocator and the VC allocator respectively. In
the crossbar they are implemented together, but for clarity we present and discuss them
separately.

The cross point functionality related to the switch allocator is shown in Figure 4.10.
The signals from an input controller (see Figure 4.4) are connected to all cross points in
the corresponding row. In each cross point a comparator cmp1 compares the port select
signal P_SEL with a constant P representing the crossbar column number. Thus, the
comparator recognizes whether the input controller wants to forward data to that output
port. If the comparison is successful, the cross point is activated. For a five-port router,
the cmp1 is simply a three-input gate.

In the active cross point, a demultiplexer dmx switches the request signal SREQ to
one of four request lines running along the column. Each request line corresponds to an
output VC and collects the switch allocation requests SREQ to that VC from all cross
points in the column. The request lines are constructed as OR-chains running along the
column. To which request line the signal SREQ is switched is determined by the signal
V_SEL. Since only one input controller may use an output VC at a time, a request line
may collect at most one SREQ signal.

The column request lines generate the signals sreq0 to sreq3 which show whether
there is any request to the corresponding output VC. The signals sreq0 to sreq3 are
processed by the round-robin arbiter (RRA) of the corresponding output port. The RRA
is also connected to the output port and monitors the Ready signals from the next router.
The Ready signals indicate whether buffer space is available in the next router. Thus,
the arbiter considers only the request for VC with available free buffer space in the next
router. Every clock cycle the arbiter grants one request, if any. The granted VC number
is indicated by the signal vc_sel which is sent back along the crossbar column. The same
signal drives the signal VC_sel at the router output port (see Figure 4.2) indication on

 73

which VC flit is being sent. The arbiter also drives the signal Valid at the output port
indicating that a request is granted and a flit is forwarded in the current clock cycle.

In the active cross points along the crossbar column, a comparator cmp2 monitors
whether the number of the VC currently granted by the arbiter (vc_sel) equals the VC
requested by the cross point (V_SEL). When the comparison succeeds, the cross point
connects the input data bus (Flit) to the output port bus and a flit is forwarded. An
acknowledgement signal is sent to the input controller on the acknowledge line SACK

running along the crossbar row. The acknowledgement line is constructed as an OR-
chain that collects the acknowledgement signals from all cross points in the row. Since
only one cross point can be active in a row, at most one acknowledgement signal is sent
on the acknowledgement line.

E
N
B

dm
x

sr
eq
3

sr
eq
2

sr
eq
1

sr
eq
0

R
ea
dy
[0
]

vc
_s
el

R
ea
dy
[1
]

R
ea
dy
[2
]

R
ea
dy
[3
]

Fl
it

V
C
_s
el

V
al
id

Fr
om

 a
n

in
pu

t
co
nt
ro
ll
er

Figure 4.10: A cross point in the crossbar switch – only the functionality supporting the
switch allocation and data switching

The cross point, as shown in Figure 4.10, switches only the forwarded data and the
switch allocator signals, but not the VC allocator signals. The cross point functionality
needed to support the VC allocation is shown in Figure 4.11. The comparator cmp1 is
the same comparator as in Figure 4.10, which activates the cross point. In an activated
cross point, the signal VHOLD is switched to one of the VC state lines running along
the column. To which state line the signal is switched is determined by the signal

 74

V_SEL. The state lines are organised as an OR-chains that collect the signals VHOLD
from all cross points in a column. The VHOLD signal shows whether the input
controller currently holds the output VC it requests. Hence, the state line shows whether
the corresponding output VC is occupied or free. Since an output VC is allocated to
only one input controller, only one of the VHOLD signals switched to a VC state line
will be active at a time.

At the end of the OR-chains the state lines are inverted and sent back along the
column. The new signals, named vack0 to vack3, indicate whether the corresponding
VC is free. In the active cross points along the crossbar column, one of the signals vack0
to vack3 is selected, again by V_SEL, and sent along to the input controller along the
VACK line. The VACK line is an OR-chain that collects the VACK signals from all cross
points in the row. Since only one cross point can be active in a row, only one VACK
signal is sent on the OR-chain. The VACK signal at the end of the line indicates to the
input controller whether the output VC it requests is currently free.

dm
x

va
ck
3

va
ck
2

va
ck
1

va
ck
0

P_SEL
V_SEL
VHOLD
VACKFr

om
 a
n

in
pu

t
co
nt
ro
lle

r

m
ux

cmp1

P

VCs state lines

VACK
line

Figure 4.11: Additional functionality in a cross point needed for support of the VC
allocation

By combining the functionality shown in Figure 4.10 and Figure 4.11 in a single
cross point, we can build a crossbar capable of switching all the signals needed for the
VC allocator, the switch allocator and data forwarding. The proposed design consists of
many small components uniformly distributed in the crossbar. As we shall see in the
next section, this integrated design results in a more area efficient implementation than a
design, where the VC allocator, the switch allocator and the crossbar switch are built as
separate, complex, but tightly interconnected blocks.

 75

4.2.6. Round-robin arbiter

The switch connections for forwarding flits are allocated to input controllers by
round-robin arbiters (RRA). Every clock cycle a round-robin arbiter grants one of the
possible multiple requests on its inputs. The requests are granted in circular priority
order as the request granted in the current cycle has the lowest priority in the next cycle.

We use the implementation of a round-robin arbiter proposed by Gupta [35]. To
explain it, we first introduce the static priority arbiter shown in Figure 4.12.a. The static
priority arbiter grants requests according to static priorities assigned to them. The
requests arrive on the arbiter inputs ri and the grant is issued on one of the outputs gi. In
the arbiter shown in Figure 4.12.a, the request inputs with lower i have higher priority.
The arbiter is organized as a priority chain. The higher end of the chain, which has the
highest priority, is set to constant ‘1’. A carry signal ci is transmitted down on the chain
links, showing whether a request of higher priority has been granted.

The variable priority arbiter, shown in Figure 4.12.b, is derived from the static one
by connecting the priority chain in a ring. Switching (OR) elements controlled by the
priority inputs pi, are added between the links in the chain. The priority inputs set the
current request priorities. At any time there is only one priority input that is active and
its position determines the position of the request input with highest priority. The active
priority input drives the corresponding OR element such that the priority ring is broken
in a chain again. Thus, the higher end of the chain and the request priority order is
determined dynamically by the priority inputs.

()

()

10

1 .

.

+

+

=

+=

+=

n

iiii

iiii

cc

pcrc

pcrg

1

.

.

0

1

=

=

=

+

c

crc

crg

iii

iii

Figure 4.12: Priority arbiters

A Round-robin arbiter is constructed from the variable priority arbiter by using the
priority control circuit presented in Figure 4.13. The current state of the priority inputs
is a function of the last grant given by the arbiter. The current request priority state is
stored in a vector of flip-flops. The state is changed only when a request is granted. The
new priority state is derived by rotating the current grant vector g with one position,
such that in the next cycle the currently granted request input has the lowest priority.
The output valid indicates whether a grant is issued in the current cycle. The signal

 76

vc_sel is derived by encoding the grant vector. Upon circuit reset one of the flip-flops
must be set while the other flip-flops are cleared.

Figure 4.13: Priority control in a Round-robin arbiter

4.3. Synthesis results

The design of a router described in the previous section was modelled in VHDL and
synthesised. The router design parameters: buffer size (B), number of VCs per port (V)
and width of the network channel (W), are left as model parameters. We synthesised the
router for a number of combinations for the design parameters values and observe how
separate parameters influence the implementation results (area and maximal operating
frequency). We also model the symmetric router architecture and use its synthesis result
as a reference for comparison. Synthesis was preformed with the Synopsys Design

Compiler using the TSMC 0.13µm library*.
The area results for different combinations of parameters are presented in Figure

4.14. The maximal operating frequency for the same combinations of parameters is
presented in Figure 4.15. In each of the three graphs shown in the figures, we vary one
of the parameters B, V or W, while the others are fixed. As a basic router configuration
we take B=2 flits, V=4, W=16 bits. The varied parameter can take the following values:
B={2,4,8} flits, V={2,4,8}, W={8,16,32} bits. Each bar in the graphs in Figure 4.14
presents the cell area for the given router configuration. The area has three contributing
parts: area taken by the input controllers, area taken by the crossbar and area taken by
other circuitry which includes the RRA arbiters and some glue logic.

The first graph in Figure 4.14 presents the router area for three different buffer
sizes. The buffer size influences only the area of the input controllers. We expect that
the area for the input controllers increases linearly with the buffer size, while the area
for the other router parts remains the same. This is confirmed by the results shown by
the graph. Doubling the buffer area almost doubles the area of the input controllers.
There is a small additive component to this area which is due to the additional state and
control logic in the input controllers

* Both products are furnished with a license from Synopsys (Northern Europe) Limited.

 77

Even for the smaller buffer size of two flits, a significant part of the area is
occupied by the input controllers, dominated by the buffer area. Thus, the network
buffers are expensive in terms of area and must be minimised. As discussed in Chapter
3, the performance gain from an increased buffer size is a higher saturation throughput
for the best effort traffic. However, in the same chapter we saw that the intensity of the
BE traffic in our network is small; even with 2-flit buffers the BE traffic utilises less
than 15% of the saturation throughput. Thus, we minimise the buffer space without
sacrificing performance.

The second graph in Figure 4.14 shows how the router area changes with the
number of VCs. The number of VCs determines the number of input controllers, the
number of crossbar inputs and the size of the arbiters. The number of input controllers
and the size of the arbiters changes linearly with the number of VCs, so does their area.
The number of crossbar inputs also increases linearly with the number of VCs.
However, the number of request/acknowledge lines along the crossbar columns (the OR
chains) is also determined by the number of VCs. Therefore, the area of the crossbar
increases more than linearly but less than square with the number of VCs.

More VCs per router port means that more guaranteed service (GS) connections can
be opened simultaneously in the network. Also the bandwidth of the physical channels
is distributed at a finer grain. However, it must be noted in Figure 4.15 that with the
increase of the VC number, the router performance deteriorates.

2 4 8
0

0.05

0.1

0.15

0.2

0.25

Buffer size [flit]

A
re

a
 [

m
m

2
]

Scaling Buffer size

(V=4, W=16)

2 4 8
0

0.05

0.1

0.15

0.2

0.25

Num. VCs per port

A
re

a
 [

m
m

2
]

Scaling VCs

(B=2, W=16)

8 16 32
0

0.05

0.1

0.15

0.2

0.25

Channel width [bit]

A
re

a
 [

m
m

2
]

Scaling Channel width

(B=2, V=4)

input controllers

crossbar

others

Figure 4.14: Area of a router for various values of the design parameters (B=buffer size,
V=number of VCs per port, W=channel width)

The third graph in Figure 4.14 shows how the router area changes with the channel
width. Channel widening increases linearly the FIFOs size and respectively the area of
the input controllers. The amount of glue logic also increases linearly. In the crossbar,
the number of bits per channel determines the number of tri-state buffers per cross point
and the number of wires in the columns and rows. Since the tool reports only cell area,
we observe only the linear dependency between the channel width and the number of
tri-state buffers. In general, crossbars tend to be wire dominant However, in our design

 78

we merge the crossbar with two control blocks (VC allocator and switch allocator) and
so introduce control functionality uniformly distributed among the cross points and the
crossbar area. Thus, we expect that our crossbar is not wire dominant and the reported
cell area is near the actual crossbar area.

While the channel widening increases the amount of data transmitted in a clock
cycle, it does not noticeably affect the router operating frequency. Therefore, widening
the physical channels effectively increases the network throughput. Doubling the
channel width doubles the router performance, but the router area increases less than
two times. Therefore, considering the performance-area ratio, the channel width is
beneficial way of increasing router performance.

2 4 8
0

50

100

150

200

250

300

350

400

450

500

550

Buffer size [flit]

F
re

q
u
e
n
c
y
 [

M
H

z
]

Scaling Buffer size

(V=4, W=16)

2 4 8
0

50

100

150

200

250

300

350

400

450

500

550

Num. VCs per port

F
re

q
u
e
n
c
y
 [

M
H

z
]

Scaling VCs

(B=2, W=16)

8 16 32
0

50

100

150

200

250

300

350

400

450

500

550

Channel width [bit]

F
re

q
u
e
n
c
y
 [

M
H

z
]

Scaling Channel width

(B=2, V=4)

Figure 4.15: Maximal operating frequency of a router for various values of the design
parameters (B=buffer size, V=number of VCs per port, W=channel width)

In Figure 4.15 we see how the maximal router clock frequency depends on the
router parameters. The strongest dependency is on the number of VCs. The reason is
that the number of VCs directly influences the length of the router critical paths. The
critical paths are the paths of the SREQ signals (see Figure 4.10), which propagate from
an input controller to the cross point, then over the column request lines to the RRA.
The arbiter returns back the signal vc_sel to the cross point where it is switched over the
row acknowledge line and returned to the input controller as the SACK signal. All this
path is propagated in a single cycle and its propagation delay determines the router
maximal clock frequency. Since the number of VCs determines the number of cross
points in the crossbar columns, it determines the length of the column request lines and
their propagation delay. The line’s propagation delay, which is dependent on the
number of OR elements in the chains, increases linearly with the number of VCs. The
delay of the arbiter also depends linearly on the number of VCs. The delay of the other
parts of the critical path is not directly dependent on the number of VCs. Therefore we
expect the delay of the router critical paths to depend linearly on the number of VCs.
The maximal clock frequency is inversely proportional on this delay.

 79

The delay of the critical paths and its dependency on the number of VCs can be
reduced by replacing the OR-chains with cascaded ORs. The cascaded OR is faster than
an OR-chain, but it uses more OR elements. Since we focus on the router area reduction
we experimented with OR-chains.

The buffer size and the channel width do not directly influence the length and the
delay of the router critical paths. For that reason they do not affect the maximal clock
frequency noticeably.

Finally, we compare the implementation results of our asymmetric router

architecture design and canonical design of symmetric architecture (see Figure 3.6). The
two architectures use the same router configuration: B=2, V=4, W=16. For the
symmetric architecture design the VC allocator, the switch allocator and the crossbar
switch are implemented as separate blocks.

Figure 4.16 compares the implementation area and the maximal clock frequency of
the architectures. The symmetric architecture has a relatively small crossbar area, while
its arbitration (‘others’) takes more than 50% of the router area. This is because the
allocators are implemented inefficiently as separate blocks and also because the switch
allocator for this architecture is more complex. However, the main disadvantage of this
architecture is that it due to its complex arbitration it cannot provide service guarantees.

The asymmetric architecture design we proposed in this chapter, in spite of its
larger crossbar, reduces the overall router area compared to the symmetric architecture.
The crossbar size increases, but the arbitration area is decreased considerably. And what
is more important, this architecture can provide guaranteed services. Although the clock
frequency of the asymmetric architecture is slightly smaller, speed of both architectures
is comparable.

Sym. Asym.
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Router architecture

A
re

a
 [

m
m

2
]

Area comparison

(B=2, V=4, W=16)

input controllers

crossbar

others

Sym. Asym.
0

200

400

600

800

1000

1200

Router architecture

F
re

q
u
e
n
c
y
 [

M
H

z
]

Frequency comparison

(B=2, V=4, W=16)

Figure 4.16: Area and performance comparison between symmetric and asymmetric
architecture of virtual channel router

 80

Table 4.1 compares the implementation results of our router with the results of the
other NoCs providing GS and BE services. For similar design parameters the area of our
router is comparable with the area of the other networks. It is slightly smaller but also
slower than the other packet switching networks. The circuit switching solution of
Wolkotte is much smaller and faster than all the packet switching solutions, but it alone
is not able to provide BE services.

Table 4.1: Router implementation results of the NoCs providing GS and BE services

NoC Flow control
Area

[mm2]

F

[MHz]

Tech.

[mm]
Configuration

Wolkotte
Circuit switching,

cut-through (serial)
0.05 1000 0.13

4-bit channel

4 channels per port,

BE network not

included

Ǽ thereal

Distib.
TDM, Wormhole 0.24 500 0.13

Ǽ thereal

Centr.
TDM, Wormhole 0.17 500 0.13

Ǽ thereal

GS only
TDM 0.03 1000 0.13

MANGO Virtual channels 0.19 515* 0.12

32-bit channel,

2x48 VCs per port,

2-flit buffers,

1-word flits

VCNoC Virtual channels 0.15 350 0.13

32-bit channel,

4 VCs per port,

2-flit buffers,

1-word flit

32-bit channel,

1-flit GS and 8-flit

BE buffers per port,

3-word flits

4.4. Conclusion

In this chapter we discuss the design and implementation of the asymmetric virtual
channel router architecture we employ in our network. Since it is considered to be too
extravagant in implementation area, the asymmetric architecture is usually disregarded
and the traditional symmetric architecture is preferred. However, here we show that for
routers of such small scale as the network-on-chip (NoC) routers, an appropriate
implementation can make the asymmetric architecture competitive in area and
performance with the symmetric one. Moreover, it is competitive with the other NoC
router solutions reviewed in Chapter 2. The reason why we insist in using the
asymmetric architecture is that, in contrast to the symmetric one, it is able to provide
predictable performance.

We propose an optimised design for an asymmetric architecture which avoids
repeated functionality, complex interfaces and makes the implementation more uniform.
All this helps in reducing the overall router area and making it smaller than that of a
symmetric router architecture.

The analysis of the implementation results confirms the observation made for other
NoC designs that in terms of area buffers are the most expensive router component. The
router maximal operating frequency is sensitive only to the number of VCs. For that
reason and because of the area constraints, the number of VCs in a router should be
minimised. What is the required minimum number of VCs from a functional point of

 81

view is discussed in the next chapter. Among the router parameters, the network
channel width is the most effective way for increasing the router throughput.

 83

Chapter 5

Evaluation of the virtual channel reservation
approach*

Virtual channel reservation is a simple approach for

providing guaranteed throughput services in a virtual

channel network-on-chip. However, its performance is

limited by the number of virtual channels per physical

channel. In this chapter we explore the limits of the

approach and investigate how these limits depend on the

routing algorithm, traffic locality, network topology and

network size. We also estimate the implementation

overhead of virtual channel reservation.

5.1. Introduction

In Chapter 3 we propose virtual channel reservation as an approach for providing
guaranteed services (GS) in our virtual channel NoC. To provide guaranteed services
we reserve a path of VCs from source to destination and the data sent over this path can
rely on a guaranteed throughput. Such paths we call GS connections and they are
reserved at run-time when the application that uses them is started.

The GS connections stay reserved for the lifetime of the application, which for our
target applications (streaming DSP applications) can be from seconds to hours. During
that time the reserved VCs cannot be used for other communications. Since there is a
limited number of VCs per physical channel, only a limited number of GS connections
can be reserved simultaneously, respectively provided to applications. Therefore, to
apply virtual channel reservation we must be sure that the network can meet the system
demands for GS connections.

In this chapter we investigate under what conditions the virtual channel reservation
can satisfy the demand for GS connections in our system. We assume a fixed number of
virtual channels. As we saw in Chapter 4, the router area and performance are sensitive
to the number of VCs, which does not give us much freedom to vary with the number of
VCs. Given a fixed number of VCs per physical channel, there are a number of factors
determining the maximal number of connections that can be open simultaneously and
these are: required bandwidth, traffic locality, connection routing, network topology and
network size. For different combinations of these factors we test whether or not the
requested connections can be provided. The test is done by means of simulations in
which a routing function tries to find and reserve paths for the approximated maximal

* Major parts of this chapter have been presented at the International Worksop on Applied and Reconfigurable
Computing [7].

 84

number of GS connections. Our goal is to identify the cases for which the proposed
NoC can satisfy the system demands and the virtual channel reservation can be applied
safely.

Applying the virtual channel reservation requires support at system level. In this
chapter we also estimate what is the system overhead for this support, in order to show
that the VC reservation can be used at run-time.

5.2. Network and GS services

Our network is constructed by interconnecting a two-dimensional array of PEs in a
grid; each PE is equipped with a router as the neighbouring routers are connected by
two physical channels, one in each direction. All physical channels have the same
bandwidth. The network is a virtual channel network [21], which means that each
physical channel is shared between K virtual channels (VCs). The VCs dynamically
share the bandwidth of the physical channel. The VCs currently transporting data
receive equal shares of the physical channel bandwidth, while the idle VCs do not
receive bandwidth.

To provide GS we use virtual channel reservation – an approach which is
introduced in Chapter 3 and which we briefly repeat here. Let the network be defined as
a graph I=(N,C), where the vertices represent the network nodes and the edges represent
the physical channels. All physical channels have bandwidth b.

Assume that on a physical channel ci, there are ki VCs transporting data, while the
remaining K-ki VCs are idle. Then, because of the bandwidth sharing each of the ki VCs
is guaranteed throughput of:

(5.1)

i

i
k

b
TH =

Thus, if we know the number of occupied VCs, we can predict what the minimal
throughput of a VC will be. Furthermore, if we can control the number of occupied
VCs, we can guarantee a minimal VC throughput. The virtual channel reservation
exploits this network feature. By controlling how the VCs in the network are used we
provide guaranteed network services.

With the virtual channel reservation approach guaranteed services are provided on a
connection basis. The network provides connections with guaranteed minimal
throughput (GS connections). A GS connection is just a path reserved over the VCs
from source to destination. Such a connection can guarantee a requested throughput THR
if all the VCs on its path guarantee a throughput that is greater than or equal to THR.
According to (5.1) this means that for all physical channels <c1, c2, … cH> traversed by
the connection it must be provided that:

(5.2) R

R

i k
TH

b
k =








≤

This is a necessary and sufficient condition for a GS connection to provide a minimal
throughput THR (for more details see Chapter 3).

The virtual channel reservation approach requires support at system level – a central
routing function that reserves the VCs and provides connections. The function runs as a

 85

system routine on a central general purpose processor. The routing function is called
every time a new connection is required and the function output is used for network
reconfiguration. To find a path with a given throughput THR the routing function
searches the network for VCs that satisfy (5.2).

Connections are requested and provided at run-time when a new application is
started. When an application is started by a central system authority, the routing
function is called to find paths for all GS connections required by the application. Since
the routing function is used at run-time, it must be fast.

The number of GS connections that can be open simultaneously in the network is

limited. The main constraint of course is the number of virtual channels, but there are
number of other factors influencing the limit:

- routing function – the routing function allocates the VCs to the connections,
thus it distributes resources to the connections. The way the allocation is done
may influence the maximum number of connections that can be opened
simultaneously.

- traffic locality – the traffic locality determines the average distance between
source and destination; therefore, it determines the average number of VCs
per connection, which in turn influences the maximum number of
connections.

- network topology – the network topology determines the number of physical
channels in the network. Hence the topology also influences the limit.

- network size – the number of nodes in the network determines the number of
physical channels for a given topology and so it may also influence the limit.

The factors listed above define a five-dimensional design space which we explore
by judiciously selecting points in each dimension. All the dimensions except the traffic
locality and network topology are independent of each other.

Traffic locality

Locality is a traffic characteristic, which is a result of the application mapping. The
mapping places the application graphs over the network graph. Thus, traffic locality
depends on the mapping algorithm, the topology of the applications graphs and the
network graph topology. To provide traffic patterns with different locality
characteristics we simulate the operation of a mapping function. We use different
mapping scenarios to map a fixed topology application graphs on fixed topology
network graphs. In that way we create what we call a spatial model of the GS traffic,
discussed in Section 5.4.

Number of VCs

We do not experiment with the number of VCs but fix it to a constant value.
Although more VCs allow more connections to be opened simultaneously, the number
of VCs cannot be increased arbitrarily because this increases the router area and lowers
router clock frequency (see Chapter 4). We fix the number of VCs per physical channel
to 4 (K=4). For this number the router area is less than 0.1 mm2 (for 16-bit channels and
2-flit buffers) and the minimal throughput per VC is 1400 MBit/s, which is enough to
support high throughput communications like HiperLAN/2 (512 Mbit/s). Increasing the
number of VCs to 8 doubles the area and reduces the minimal VC throughput to 800
Mbit/s, which might be a tight bound for high throughput applications. The number 4 is

 86

also motivated by the result of a study about the trade-off between performance and
buffer area of a virtual channel router, presented by Dally [21]. According to (5.1), with
K=4 a VC can guarantee throughput of b, b/2, b/3 and b/4.

Routing function

To test whether the NoC can satisfy the system demand for connections, we have to
test whether the routing function can provide paths for the maximal number of
requested connections. We do this by means of simulation experiments. We simulate
only the operation of the routing function and not the network itself. The routing
function takes as an input two nodes, a source-destination pair, between which a
connection is needed and returns as a result a path for the connection. The network is
represented by its topological graph and the routing function is run to find paths in the
graph for a number of connections that approximates the maximal number of
connections demanded by the system. The number of connections and their distribution
in the system are provided by a spatial model of the GS traffic in the system.

To see how the routing function performs in different conditions, simulation
experiments are performed for different combinations of factors listed above. Given a
fixed number of VCs, we experiment with the other factors influencing the maximum
number of connections. We experiment with two routing algorithms – one that does
load balancing trying to uniformly distribute traffic in the network and another that does
not do load balancing. Experiments are made for traffic with different locality. We
construct traffic models that approximate worst case locality, best case locality and
intermediate case locality.

Topology

The experiments are conducted for the most popular grid topologies shown in
Figure 5.1 – mesh and torus (see Chapter 2). Later we also make energy cost
estimations where the length of the network channels is important. For that reason we
include also the folded torus topology. The folded torus has the same graph topology as
torus, but its nodes are reshuffled in the plane and the network channels have different
physical length.

Mesh Torus Folded-Torus

Figure 5.1: Network topologies used in the experiments

Network size

To take into account the effect of the network size, experiments are performed with
networks of two sizes – 10-by-10 nodes and 16-by-16 nodes. Considering the available
chip area and the size of the processing elements, these are system sizes feasible in the
today and near future semiconductor technologies.

 87

We continue with a more detailed introduction of the routing function and an
estimation of the overhead it entails. Later we describe the traffic model we use to
simulate the routing function. Finally, we describe the simulation experiments and
present the results.

5.3. Routing function

The task of the routing function is to find paths for GS connections. A GS
connection is described by its source node S, destination node D and requested
throughput THR. The routing function has the form R(S,D,THR). It takes as an input a
connection description and returns a description of a network path from S to D, or fails
if the connection cannot be provided. The returned path guarantees a throughput of at
least THR. The path is described as an ordered sequence <vc1, vc2, …, vcn> of virtual
channels vci reserved for the connection.

5.3.1. Operation

When searching for a path that can provide a specified throughput THR, the routing
function may use only physical channels that satisfy (5.2) or in other words, physical
channels where the number of occupied VCs is less than or equal to kR. When the
routing function decides to route a path over a given physical channel ci, it reserves one
of the free VCs on that physical channel. This changes the throughput of the other
occupied VCs, if any, on the same physical channel. Therefore, searching for a path, the
routing function must be aware that it does not violate the guarantees given to the paths
already routed. The routing function must use only channels satisfying the following
two GS routing criteria: if the path is routed through the physical channel, then i) (5.2)
will hold for the path currently being routed and ii) (5.2) will still hold for the paths
already routed through the same physical channel. Here we discuss only the basic
functionality of the routing function. More advanced options like changing of existing
paths are considered as future work.

To apply the GS routing criteria, the routing function must know the state of the
VCs on every physical channel. The VC state indicates whether a VC is occupied, and if
so, what throughput it guarantees, or what the kR of the path used is. The constraint kR
may take integer values between 1 and K.

The state of the VC j on a channel ci is stored in a state variable rij that may take
values 0, 1, … K. Value 0 indicates that the VC is not occupied, while for the occupied
VCs rij stores their constraint kR:

(5.3)






=
occupiedisvcifk

occupiednotisvcif
r

ijR

ij

ij

0

The state variables of all VCs in the network construct the network state. Thus the
routing function is of type:

 pathstateTHDSstateR R ×→×××:

Given the network state, we can find the number ki of occupied VCs on a given physical

channel ci by counting the number of VCs on ci which state rij≠0, 0 ≤ j ≤ K-1. The
routing function needs to know ki when deciding whether it can route through a given

 88

physical channel ci. The routing function checks whether ki satisfies the routing criteria.
The first criterion is to guarantee the throughput of the connections being routed, which
is:

(5.4) Ri kk ≤+1

The second criterion is to guarantee the throughput of the connections already routed
through the same physical channel, which is:

(5.5) 10,0|1 −≤≤≠≤+ Kjrrk ijiji

When a physical channel satisfies these criteria, the routing function may use any free
VC on it.

The routing function searches the network state for VCs that satisfy the routing
criteria and uses these channels to construct a path between the source S and destination
D. When the path is found, the routing function sets the state of all VCs used in the path
to kR (rij:=kR). In this way it reserves the VCs, since they are not considered in following
path searches. When the path is not needed any more (e.g. the application using it
terminates) the state of the used VCs are freed and their state is set to “free” (rij:=0).

In this chapter we discuss only routing of GS traffic. However, in the real system
both types of traffic, BE and GS traffic, are handled. This requires a small modification
of the network state and the routing function. The network state needs one extra bit per
VC to identify whether the VC is used to carry BE or GS traffic. When a VC is used for
BE traffic, its state shows the number of BE paths that share the VC. The routing
function increments or decrements the VC state value when routing or deleting a path
through the VC. When routing BE traffic, the function must avoid deadlock. As
discussed in Chapter 2, the most inexpensive way for that is to apply the Turn Model,
which restricts the turns the paths can make.

Finding a route in a network is equivalent to finding a path between two nodes in a
graph. The network topology is represented as a graph I=(N,C) and a path searching
algorithm is run on that graph. Among all possible paths the shortest is preferable,
because shorter network routes result in less network traffic and less energy for
communication. Therefore, the routing function is based on an algorithm for the shortest
path search in graphs. Actually, the algorithm runs on a sub-graph I’=(N,C’) which is
derived by removing all channels in I that do not satisfy the GS routing criteria. In the
course of operation the routing algorithm thus ignores the channels in I that do not
satisfy the GS routing criteria.

5.3.2. Algorithms

We experiment with two shortest path search algorithms: Breadth-first search
(BFS) and Dijkstra’s algorithm (DA) [20]. Breadth-first search is a basic shortest path
search algorithm that works on non-weighted graphs. It is also used as routing algorithm
in the IBM SP2 system [74]. We use BFS to implement a simple routing function that
does not do load balancing. The algorithm finds shortest paths in terms of the number of
edges. Thus, the routing function based on BFS finds paths that are minimal in terms of
physical distance. However it does not take into account the current state of the network
– physical channels with or without load are treated equally as long as they satisfy the
GS routing criteria. The computational complexity of the algorithm is linear in the

 89

number of network nodes O(N). The memory complexity of the algorithm is also linear
in the number of network nodes.

Dijkstra’s algorithm is a more advanced shortest path search algorithm that works
on weighted, directed graphs with non-negative weights. We use it to implement a more
sophisticated routing function that tries to balance the traffic by distributing the
communication over the network. The algorithm finds shortest paths in terms of a
minimal weighted sum. In our network, the weight we assign to an edge is one plus the
number of occupied VCs on the corresponding physical channel; thus the weight of
channel ci is (1+ki). In the sum, one stands for a unit of physical distance and ki is the
weight representing the number of occupied VCs. Thus, searching for a minimal weight
path, DA prefers to use physical channels with fewer VCs occupied, so we may expect
that DA will distribute communications in the network more uniformly than BFS.

The graph weights change dynamically. Every time a connection is routed the state
of the reserved VCs is changed, which increases the weights of the physical channels
traversed by the connection. Reversely, when the connection is deleted, the VCs are
released and the weights are reduced. Hence, the weights reflect the current network
state and the routing algorithm adapts its decision to this state.

A naive implementation of Dijkstra’s algorithm leads to a computational
complexity of O(N2), but with an optimised version O(C log2N) can be achieved [20].
The memory complexity of the algorithm is linear in the number of nodes.

Here we experiment only with BFS and DA algorithms to find out whether the load

balancing improves the performance of the routing function. However, the A* (A star)
algorithm [37] can be used to reduce the run time of the routing function. The A*
algorithm performs a directed search in a graph. Since our network topology is known
in advance, we can use this knowledge to direct the algorithm in its search for a shortest
path. Thus, we can reduce the number of explored nodes and respectively to reduce the
average time for finding a connection. We include the A* algorithm in our future work.

5.3.3. Overhead

To measure the time overhead due to the routing, we measure the worst case
execution time of the routing function on an ARM processor – a general purpose
processor popular for a low-power SoC. The worst case execution time of the routing
function gives the maximal time for routing a connection. We implement in C two
routing functions, one based on BFS and one based on DA, and run them on an ARM7
simulator to measure their worst case execution time. For DA we use the naïve
implementation of complexity O(N2) because our intention here is to get an indication
about the magnitude of the execution times. Since in the simulations presented in
Section 5.6 DA does not prove to be beneficial to the performance of the routing
function, we do not make further efforts to optimise DA.

While, searching for a path, both algorithms progressively explore network nodes
until the destination node is reached. The number of explored nodes determines the
number of iterations the algorithm makes. Thus, to create a worst case execution
condition, we force iteration over all the nodes. Since a mesh and a torus topology have
the same number of nodes, the topology does not influence the worst case execution
time. We measure the time assuming a mesh topology. Each algorithm is run once to
explore all network nodes and its execution time is recorded. To see how the overhead

 90

scales with the network size, measurements are taken for two network sizes – 10-by-10
and 16-by-16.

The results are presented in Table 5.1. Even at a modest clock frequency of 100
MHz, BFS can provide a connection in less than a 1 ms for both network sizes.
Typically our applications require 5 to 10 connections [67, 87]. Hence, providing all
connections will take several milliseconds. Therefore, when an application is started, the
time overhead due to the routing is of an order of milliseconds, which is tolerable given
that the lifetime of GS connections ranges from seconds to hours.

With DA the maximal time for providing a connection increase to 1.7 ms and 10 ms
for the two network sizes. Then, the time overhead for starting an application can be
tenths to hundred milliseconds. This is also tolerable but it is almost perceptible to the
user. Increasing the clock frequency to several hundreds of MHz will reduce the DA
overhead, but will not improve its scalability with the number of nodes. The scalability
of DA is poor because of the high complexity of the used algorithm, O(N2). The poor
scalability will be a problem when the system size grows. Therefore, if the routing
function is based on DA, a more optimised implementation of the algorithm with
complexity lower than O(N2) must be used.

Table 5.1: Time overhead for routing a single connection in a network with 4VCs per
physical channel; WCET = Worst Case Execution Time

BFS DA

10x10 28720 172055

16x16 74355 1020995

10x10 287 1721

16x16 744 10210

WCET [µs]

@100MHz

WCET [cycle]

AlgorithmNetwork

size
Time overhead

BFS DA
0

2000

4000

6000

8000

10000

12000

Algorithm

T
im

e
 [
µ

s
]

Worst case execution time on ARM7@100MHz, 4VCs

10x10 network

16x16 network

Figure 5.2: Scalability of the routing function execution time with the network size

To see how the time overhead for routing a connection scales with the number of
VCs, we measure the worst case execution time of the routing functions for 4 and 8 VCs
per physical channel in a network of fixed size 10-by-10 nodes. The results are
presented in Table 5.2 and Figure 5.3.

The number of VCs influences the execution time of the algorithms only through
the GS routing criteria used as a channel selection rule. When the algorithm explores a
node, it applies the channel selection rule to the physical channels of the node. Applying
the rule to a physical channel means examination of the state of all VCs on that physical

 91

channel. Hence, by increasing the number of VCs we linearly increase the time for
applying the rule and respectively the time for exploring a node. Since the algorithm
iterates over the network nodes, when increasing the number of VCs we linearly
increase the time for a single iteration and the algorithm execution time. Here we
examine the worst case execution time and both algorithms iterate over all network
nodes (100 nodes for a 10-by-10 network). Hence, both algorithms perform the same
number of iterations and we expect that a change in the number of VCs will have the
same impact on the execution time of both algorithms.

The results in Table 5.2 and Figure 5.3 confirm our expectation. The increase in the
number of VCs from 4 to 8 leads to a similar increase of the execution time for both

algorithms. This increase is about 1.1 µs (110 cycles) per iteration or about 0.1 ms in
total. Because this value is small compared to the total execution time, and because a
large number of VCs is not possible due to their high area cost and negative impact on
the performance, we do not consider the number of VC a serious time overhead related
issue.

Table 5.2: Time overhead for routing a single connection in a 10×10 network; WCET =
Worst Case Execution Time

BFS DA

4 28720 172055

8 39724 183801

4 287 1721

8 397 1838

WCET [µs]

@100MHz

WCET [cycle]

Algorithm
Num. VCsTime overhead

BFS DA
0

500

1000

1500

2000

Algorithm

T
im

e
 [
µ

s
]

Worst case execution time on ARM7@100MHz, 10x10 network

4 VCs

8 VCs

Figure 5.3: Scalability of the routing function execution time with the number of VCs

The memory overhead for supporting the routing function is presented in Table 5.3.
The function implementation requires memory for storing the function code, function
variables and memory for storing the network state. It shows that both algorithms have
similar memory requirements. Most of the required memory is for storing the network
state. The network state is the same for both algorithms and consists of the state of all
VCs in the network. Assume w bits are needed to store the state of a VC. Then, per
physical channel Kw bits are required.

The size of the network state for the two network topologies is calculated in the
following way. In a torus network every node is connected to five channels – four to

 92

neighbouring routers and one to the local PE. Therefore, to store the state of a N-node

torus network 5NKw bits of memory are needed. In a mesh network of size n×n=N
nodes, there are (n-2)2 nodes connected to 5 channels, 4(n-2) nodes connected to 4
channels and 4 nodes on the corners connected to 3 channels (always including the
channel to the local PE). Thus, to store the state of a mesh network [5(n-2)2+4*4(n-
2)+4*3]Kw bits are needed. The network state memory presented in Table 5.3 is for a
network with 4 VCs per physical channel (K=4) and a state of one byte per VC (w=8).
Given four VC per physical channel, the VC state variable can take 5 values – from 0 to
4 (see Section 5.3.1). Thus, three bits are enough to store a VC state and the total
network state given in Table 5.3 can be compressed. However, this will complicate the
access to the state variables.

The memory required for the support of a routing function can reach several
KBytes, which may exceed the size of the local memory of a PE. However, the routing
function runs on a central general purpose processor, which besides routing performs
other system function. To support the system, this processor cannot rely only on a local
memory but is connected to a larger external memory of size of hundreds of MBytes
[94]. This is where the network state is stored. Compared to that memory size, the
memory overhead due to the routing is acceptable. The external memory is slower than
the internal one, but the ARM system we consider here runs at 100 MHz which is also
slow and due to caches the access time of the external memory is not a bottleneck.

Table 5.3: Routing function memory overhead

BFS DA

Code size [byte] - 512 484

10x10 400 300

16x16 1024 768

10x10 1840 1840

16x16 4864 4864

10x10 2000 2000

16x16 5120 5120

Algorithm variables [byte]

Network state* [byte]

for mesh topology

Memory overhead

*-Assuming 4 VCs per physical channel

AlgorithmNetwork

size

Network state* [byte]

for torus topology

We investigate two options for implementing the routing function – BFS and DA.

While both algorithms have similar memory complexity, DA has a higher
computational complexity than BFS. To decide which algorithm is preferable, we have
to know also how the algorithms perform, in terms of maximal number of provided
connections. To find out that, we simulate the operation of the routing function with a
traffic model that estimates the maximal number of requested connections.

5.4. Spatial model of the GS traffic

The performance of the routing function is tested against a model of the GS traffic
in our system. The model reflects the special aspects of the streaming traffic in the
system – it approximates the maximal number of GS connections requested by the
system and the traffic pattern these connections follow. Furthermore, the model allows
for experiments with different degrees of traffic locality.

The GS traffic in our system is generated by streaming applications. Streaming
applications typically have a simple pipeline structure represented by a pipeline graph.

 93

At a certain moment in time a number of streaming applications are running
simultaneously in the system. Hence, there are number of pipeline graphs scattered over
the PEs. The edges of the pipeline graphs represent the required GS connections. To
model such traffic we use a graph with a ring topology whose nodes are scattered over
the PEs. A large ring graph can be considered as many short pipeline graphs connected
serially. Scattering the nodes of the ring graph over the PEs, scatters the short pipeline
graphs in the same way we expect to find in the real system. The only difference is that
in a real situation some of the applications may communicate with peripheral devices
instead of with other applications. However, most likely these peripheral devices will be
placed at the border of the PE array where they are connected to the on-chip network.
Therefore, the ring graph nodes assigned to border PEs can be considered as peripheral
devices which are sources and sinks of data.

To approximate the maximal number of GS connections demanded by the system,
we assume that the number of vertices in the ring graph is equal to the number of PEs in
the system. Every graph vertex then is mapped on a separate PE, which means that
every PE in the model generates and consumes a stream. Hence, the model assumes
single task processors in the system, which is the case for the majority of the PEs in our
system. The traffic model produces as an output a list with the connections in the
mapped ring graph. The connections are described by their source and destination PE.
The list consists of N connections, one connection per PE. During the simulations, the
traffic model produces such lists and for each list the routing function is called to find
paths for all the connections.

The actual PEs where an application will run is determined by the spatial mapping
[72]. The positions of these PEs determine the communication distances between the
application tasks. Thus, the spatial mapping has a strong influence on the
communication locality. We use the spatial mapping to enforce specific locality
characteristics in the traffic patterns generated by our traffic model. The traffic model is
constructed by mapping of the ring graph on the array of PEs. To model the traffic
locality we use three different strategies for mapping the ring graph. The three strategies
produce mappings that approximate respectively the best, the worst and an intermediate
case of traffic locality.

The three mapping strategies use the same algorithm for choosing the PEs, but
differ in a locality parameter given to the algorithm. The algorithm operates on the ring
graph in the following way. The graph vertices are mapped sequentially in the order
they appear in the graph. For every next vertex, a PE is chosen randomly among those
PEs which are at a distance less than or equal to d hops from the PE where the previous
graph vertex is mapped. Here d is a parameter of the algorithm that sets a diameter for
the preferred network distance. If there is no free PE within that distance, then a PE is
chosen randomly among all free PEs. In this way the majority of the communicating
PEs are close to each other, but still there are some long distance communications in the
system. We expect that to be near to the real conditions in the system because not
always the particular circumstances will allow communicating tasks to be mapped close
to each other, e.g., inter-application communications, dependencies on the PE type or
hot-spot areas in the system

The three mapping strategies differ only in the value of the parameter d. The first
strategy tries to maximize the traffic locality; it sets the parameter d to 1 and
approximates best case locality. The second strategy approximates worst case locality. It
sets the parameter d to the diameter of the network (the longest network distance, which

 94

in a 10-by-10 network is 18 hops). Therefore, the worst case mapping strategy
uniformly scatters the graph nodes over the PEs and no locality should be expected.

The third strategy sets d to an intermediate value 4, so we call this the intermediate
case of locality. The intermediate locality models the situation expected in a real system
where the mapping procedure tries to reach maximal locality but does not always
succeed, because the nearby PEs might be occupied by already running applications or
be of the wrong type. The distance range from 1 to 4 is where we expect the average
communication distance to fall in a system that makes optimisation efforts towards
improving its traffic locality. That is because the applications we consider usually
consist of 5-10 nodes, so they can form clusters of 5-10 occupied PEs. Within a range of
4 hops, up to 40 other nodes can be reached, which is more than enough to jump across
clusters to find a free node around. So we can infer that communication distances of
four and more hops will not be observed so often.

The traffic model we construct by scattering the vertices of the ring graph is a
subset of the class of permutation traffic, well known in the domain of interconnection
networks [27]. In permutation traffic patterns, each source s sends all its data to a single

destination d chosen by a permutation of the nodes, d=π(s). The difference with our
model is that we force specific locality characteristics in the generated traffic patterns.

By using the three mapping strategies, our traffic model can produce traffic patterns
with different locality characteristics – best, worst and intermediate locality. The traffic
patterns are randomised, but with specific locality characteristics depending on the used
mapping strategy. The mapping strategy influences only the average distance of the
connections generated by the traffic model.

The distribution of the distances of the connections generated by our traffic model
for the three different cases of locality is presented in Figure 5.4 to Figure 5.7. The four
figures present results for mesh and torus topologies and for network sizes of 10-by-10
and 16-by16 nodes. Figure 5.4 presents the distance distribution for a mesh topology of
size 10-by-10. The three graphs correspond to the three locality cases. Although no
locality is expected in the case of worst locality, the distances are not uniformly
distributed but follow the distance distribution in the mesh topology [64]. The locality
preserving mapping strategies (the intermediate and best case locality) give preference
to distances smaller than or equal to d, so these distances appear with higher probability
than the others. For example, for intermediate traffic locality, 97% of the
communications are at a distance less than or equal to 4 and only 3% at a distance
greater than 4.

Since the distribution of distances between the vertices in a torus and mesh graphs
differ, changing the topology from mesh to torus changes the shape of the distance
distribution. The change is most clearly seen for worst case locality traffic. Increasing
the network size changes the network diameter and the mean of the distance
distributions, but does not change their shape.

The result of the mapping shows that even with the simple mapping strategy we use
a high degree of locality can be achieved. In the left graph of the figures where we aim
at the highest possible locality, the mapping algorithm manages to map on nearest
neighbour PEs 88% of the graph nodes. This is because of the simple application
structure we assume. Hence, the simple pipeline structure of streaming applications
simplifies the application mapping.

 95

0 5 10 15 20
0

0.2

0.4

0.6

0.8

Distance [hops]

F
re

q
u
e
n
c
y

"Best" locality

mean= 1.8

"≤1 hop": 88%

">1 hop": 12%

0 5 10 15 20
0

0.2

0.4

0.6

0.8

Distance [hops]

F
re

q
u
e
n
c
y

"Intermediate" locality

mean= 3.1

"≤4 hops": 97%

">4 hops": 3%

0 5 10 15 20
0

0.2

0.4

0.6

0.8

Distance [hops]

F
re

q
u
e
n
c
y

"Worst" locality

mean= 6.7

Mesh network, 10-by-10

Figure 5.4: Distance distribution in a 10-by10 mesh network and ring communication
pattern

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance [hops]

F
re

q
u
e
n
c
y

"Best" locality

mean= 1.5

"≤1 hop": 88%

">1 hop": 12%

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance [hops]

F
re

q
u
e
n
c
y

"Intermediate" locality

mean= 2.9

"≤4 hops": 97%

">4 hops": 3%

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance [hops]

F
re

q
u
e
n
c
y

"Worst" locality

mean= 5

Torus network, 10-by-10

Figure 5.5: Distance distribution in a 10-by10 torus network and ring communication
pattern

0 10 20 30
0

0.2

0.4

0.6

0.8

Distance [hops]

F
re

q
u
e
n
c
y

"Best" locality

mean= 2.2

"≤1 hop": 88%

">1 hop": 12%

0 10 20 30
0

0.2

0.4

0.6

0.8

Distance [hops]

F
re

q
u
e
n
c
y

"Intermediate" locality

mean= 3.2

"≤4 hops": 97%

">4 hops": 3%

0 10 20 30
0

0.2

0.4

0.6

0.8

Distance [hops]

F
re

q
u
e
n
c
y

"Worst" locality

mean= 11

Mesh network, 16-by-16

Figure 5.6: Distance distribution in a 16-by16 mesh network and ring communication
pattern

 96

0 10 20 30
0

0.2

0.4

0.6

0.8

Distance [hops]

F
re

q
u
e
n
c
y

"Best" locality

mean= 1.8

"≤1 hop": 88%

">1 hop": 12%

0 10 20 30
0

0.2

0.4

0.6

0.8

Distance [hops]

F
re

q
u
e
n
c
y

"Intermediate" locality

mean= 3.1

"≤4 hops": 97%

">4 hops": 3%

0 10 20 30
0

0.2

0.4

0.6

0.8

Distance [hops]

F
re

q
u
e
n
c
y

"Worst" locality

mean= 8

Torus network, 16-by-16

Figure 5.7: Distance distribution in a 16-by16 torus network and ring communication
pattern

5.5. Simulation experiments

We perform simulation experiments to test how different factors influence the
routing function performance and respectively the applicability of the virtual channel
reservation. A simulation experiment consists of two steps. In the first step the traffic
model generates a set of N connections and in the second step the routing function is
called to find a path for each connection. The output of the simulation experiment is a
set of the paths found by the routing function. First of all, we are interested whether the
routing function can find paths for all N connections. In case all the paths are found, the
experiment is considered successful. We also collect information about the actual length
of the paths found. All N connections are GS connections and request the same
throughput THR. In this way we test the limit for maximal requested throughput. Since
the network supports four VCs per physical channel, THR may take values b/4, b/3, b/2
or b.

Experiments are conducted for all combinations of factors influencing the
performance of the routing function:

- routing algorithm – we experiment with the two routing functions based
respectively on Breadth-first search (BFS) algorithm and Dijkstra’s algorithm
(DA), discussed in Section 5.3

- traffic locality – we experiment with traffic patterns with different locality
characteristics: worst, intermediate and best, discussed in Section 5.4

- network topology – we use mesh and torus, two network topologies most
popular for on-chip and multiprocessor networks

- network size – we experiment with two network sizes 10-by-10 and 16-by-16
nodes or 100 and 256 nodes.

To asses the performance of the routing function for average traffic conditions, we

perform 1000 experiments for each combination of factors. In each experiment changes
only the traffic pattern according to which the connections are distributed. The patterns
are randomised, but with similar locality characteristics. Each experiment sets a sample
in the space of the possible traffic patterns. We count the number of the successful
samples. The path length results collected for the successful samples are averaged. The
number 1000 was chosen empirically as the smallest value, for which a further increase

 97

does not change the results noticeably. The results of the performed simulation
experiments are presented and discussed in the following section.

5.6. Simulation results

In this section we present and discuss the results of the conducted simulation
experiments. We compare how the different factors influence the performance of the
routing function in order to decide which of them are of importance and can be used for
improvement and which can be neglected.

5.6.1. Number of successful samples

Figure 5.8 shows how many of the 1000 samples taken for each combination of
factors in a 10-by-10 network are successful. In other words, it shows in how many of
the 1000 experiments the routing function succeeds to route all the connections. The
three graphs correspond to the three cases of traffic locality, each graph presenting the
results for mesh and torus topology. Of interest to us are the cases in which all 1000
samples are successful because in these cases the network can satisfy the system
demands for GS connections; therefore, the virtual channel reservation approach can be
safely applied. The best result would be to have in all the cases all 1000 samples are
successful. However, because of the limited number of VCs, in some of the cases this
cannot be achieved. In the cases when not all samples are successful, the routing
function cannot always provide all requested GS connections and the virtual channel
reservation approach will limit the system operation.

In Figure 5.8 we see that for worst case traffic locality the virtual channel
reservation approach can be safely applied if the requested throughput THR is restricted
to b/4 for mesh topology and up to b/3 for torus topology. The torus topology helps to
improve the performance in such traffic conditions by increasing the throughput limit
from b/4 to b/3. This is because the torus has smaller diameter, which shortens the
average length of GS connections. Introducing traffic locality improves the performance
of the virtual channel reservation approach by increasing the limits on the THR to b/2 for
intermediate locality and b for best locality. The reason is that traffic locality restricts
the length of the GS connections, so fewer VCs are reserved per connection. The VCs
that are left free may be used either for opening more connections or to increase the
throughput demand per connection. When the traffic shows locality, the improvement
achieved by replacing the mesh with the torus topology is not significant, because the
GS connections are short because of the locality anyway.

 98

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

500

1000
"Worst" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

500

1000
"Intermediate" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

500

1000
"Best" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

BFS

DA

BFS

DA

BFS

DA

Figure 5.8: Number of successful samples in a 10-by-10 network

The two routing algorithms do not change significantly the performance of the
routing function. The DA and BSF perform almost equally in all cases, although DA
tries to do load balancing and BFS does not. The most important observation is that in
all the cases the demand for GS connections is either satisfied or not satisfied, no matter
which algorithm is used. The reason that both algorithms perform similarly, although
they put different efforts in routing, is the traffic pattern in the system which is a result
of the simple application structure. Every node in the network generates and consumes
one stream. Hence, the sources and sinks of data are uniformly distributed in the
network and so are the connections. Thus, with this applications structure and this
system organization, the traffic in the system is almost balanced and it does not make
much difference whether the routing algorithm performs load balancing or not.

Among the three factors – locality, topology and routing algorithm – the traffic
locality is the one with strongest influence on the routing performance, while the
routing algorithm does not influence the performance significantly.

The results show also that 4 VCs per physical channel provide enough network
resources for applying the virtual channel reservation in a 10-by-10 network if the
throughput requests are restricted to b/4 (in a mesh network) or b/3 (torus network). By
increasing the traffic locality the throughput restriction can be increased to b/2 or b.

 99

By requesting different throughput (b/4, b/3, b/2 or b) we restrict the number of
VCs, ki, used on a physical channel to 4, 3, 2 or 1 (see (5.2)). Therefore, the results for
the different throughput requests can be interpreted also as results for a different number
of number of VCs per physical channel.

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

500

1000
"Worst" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

500

1000
"Intermediate" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

500

1000
"Best" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

BFS

DA

BFS

DA

BFS

DA

Figure 5.9: Number of successful samples in a 16-by-16 network

The number of successful samples in a network of size 16-by-16 is shown in Figure
5.9. Compared to a 10-by-10 network, the results deteriorate for traffic with no locality,
while for local traffic the results are similar. The reason is that when the traffic does not
show locality, the average communication distance increases with the increase of the
network size. In contrast, for traffic that shows locality the communications are mostly
local and the communication distances do not depend strongly on the network size.

The results show that the virtual channel reservation cannot be used in 16-by-16
network when traffic does not show locality, because the network cannot provide the
requested GS connections. To apply the approach in a larger network, the number of
VCs per physical channel can be increased. However, this solution is costly in terms of
area. The other options are to use a network topology with a higher connectivity, like
the torus, or to increase the communication locality. The last option is most profitable,

 100

because, as we shall see, improving the traffic locality also helps to reduce the
communication energy cost and generally improves the traffic conditions.

Again, and for the same reason as before, the routing algorithms do not show
significant performance differences.

5.6.2. Detour cost

The routing function tries to route GS connections using shortest paths, but this is
not always possible because some VCs along the shortest path might be occupied. In
such a case the routing function takes a detour – a path which is not minimal. Detour

cost is defined as the difference between actual path length and the distance between
source and destination (the minimal path length). The better routing algorithms manage
to route the traffic using shorter paths and therefore, with less detour cost.

The detour cost in a 10-by-10 network is shown in Figure 5.10. The presented
figures give the sum of the detour cost of all 100 connections in the traffic pattern. The
cases when routing is not possible (see Figure 5.8) and no data is available are marked
with ‘x’. In most of the cases the sum detour cost is less than ten hops, which is
negligible compared to the sum distances of the 100 connections (at least 100 hops).
This means that both algorithms manage to find short paths for most of the connections.

The detour cost exceeds 10 hops only in the cases when not all GS connections can
be routed (see Figure 5.8). In these cases the routing function runs into a situation when
the network resources are almost exhausted and finding a direct path is almost
impossible. When routing the last few (2-3) connections, the function takes long
detours. So the contribution to the detour cost shown in the figure comes mainly from
few connections that are routed last, while the rest of the connections use almost
minimal paths.

The detour cost becomes large only in the cases when not all requested connections
can be routed (see Figure 5.8 and Figure 5.9), in which cases the routing function
operates near its limits and the VC reservation cannot be effectively used. For the cases
where the routing function freely routes all the connections, which are the cases where
the VC reservation is intended to be used, the detour cost is negligible. Therefore, we
can conclude that in cases of practical importance the detour cost is negligible.

 101

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

10

20

30

40

50
"Worst" locality

TH
R

D
e
to

u
r

[h
o
p
s
]

Mesh Torus

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

10

20

30

40

50
"Intermediate" locality

TH
R

D
e
to

u
r

[h
o
p
s
]

Mesh Torus

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

10

20

30

40

50
"Best" locality

TH
R

D
e
to

u
r

[h
o
p
s
]

Mesh Torus

BFS

DA

BFS

DA

BFS

DA

X X X X X X

X X X X

Figure 5.10: Detour cost in a 10-by-10 network

Figure 5.11 presents the detour cost in a 16-by-16 network. For the cases where the
virtual channel reservation is applicable, the detour cost is again less than 10 hops and
therefore negligible.

 102

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

50

100

150
"Worst" locality

TH
R

D
e
to

u
r

[h
o
p
s
]

Mesh Torus

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

50

100

150
"Intermediate" locality

TH
R

D
e
to

u
r

[h
o
p
s
]

Mesh Torus

b/4 b/3 b/2 b b/4 b/3 b/2 b
0

50

100

150
"Best" locality

TH
R

D
e
to

u
r

[h
o
p
s
]

Mesh Torus

BFS

DA

BFS

DA

BFS

DA

X XX XX XX XX X

X X X X

X

Figure 5.11: Detour cost in a 16-by-16 network

5.6.3. Communication energy cost

Wolkotte et al. [9] perform gate level power simulations with the VHDL model of
our virtual channel router. Wolkotte estimates the average energy cost for traversing a
router and uses this result to construct an energy model of the virtual channel network.
He also constructs an energy model of his circuit switching network [9]. Here we use
the same energy models to estimate and compare how the factors routing algorithm,
traffic locality, network topology and network size influence the average communication
energy cost for both networks – our virtual channel network and the Wolkotte’s circuit
switching network.

The energy models estimate the average energy cost for transporting a bit in the
network, in [pJ/bit]. Both models have the form:

(5.6) () ()
hopwirehopRps NlNEE 12.039.01 +++=

Here lwire is the length of a physical channel in mm. Nhop is the average network distance
in number of hops. ER stands for the energy cost for traversing a router. The energy cost

 103

ER for the virtual channel router and the circuit switch is derived by gate level power

simulations for 0.13 µm technology and takes values ER_PS = 0.98 [pJ/bit] and ER_CS =
0.37 [pJ/bit]. The second term in the model estimates the energy for traversing the wires
between two routers (the physical channels).

We use the energy models to estimate the average communication energy cost for
three topologies – mesh, torus, and folded torus (see Figure 5.1). For the size of a PE we
assume 1.5x1.5 mm or 2.25 mm2

 – the size of Montium processing tile [40]. The PEs
are arranged in a two-dimensional array and interconnected using different topologies.
The different topologies result in different channel length and different average
communication distance. In a mesh, the length of the physical channels equals the edge
length of the PE edge, so lwire is 1.5 mm. In a torus topology, the wraparound channels
cross the entire array of PEs. Thus, in a 10-by-10 network and a 16-by-16 network the
length of the wraparound channels is respectively 15 mm and 24 mm. In a folded torus,
the channels in the middle of the network cross two PEs, so they are 3 mm long. To take
into account that the wraparound channels in a torus have a different length, (5.6) is
modified to contain two terms that capture the energy contribution of the regular
channels and the wraparound channels. For a 10-by-10 torus network the modified
equation is:

(5.7)
() ()()

() hop

hophopRps

pN

NpNEE

15*12.039.0

15.1*12.039.01

++

−+++=

The network distance Nhop is replaced by the mean communication distance
calculated from the simulation results. During the experiments we collect information
about the utilization of the regular channels and the wraparound channels. This
information is used to calculate the coefficient p in (5.7). The weight p stands for the
fraction of hops that traverse a wraparound channel.

Figure 5.12 presents the results for the average communication energy cost in a 10-
by-10 network. The left graph presents the results for the virtual channel network and
the right graph presents the results for the circuit switching network. The results show
that by exploiting traffic locality, the average communication energy cost in the system
can be reduced by 50% to 70% for the different topologies. The reason is that with local
traffic the average number of traversed channels and routers is smaller, which reduces
the energy spent for communication.

In a condition of worst case locality, the torus topology reduces the energy cost
compared with a mesh topology because the smaller network diameter of the torus
keeps the average communication distance shorter. When the traffic shows locality and
therefore shorter communication distances, the smaller torus diameter is not
advantageous any more.

Because the length of the physical channels in a folded torus is doubled compared
to torus, it should be expected that the energy cost also increases. However, the results
show that changing the network topology from torus to folded torus does not change the
communication energy cost notably. That is because for traffic without locality, the
same amount of energy used for traversing the longer channels in the folded torus is
used for traversing the wraparound channels in the torus. In other words, the average
aggregated channel length traversed by the messages is equal in both topologies and no
difference in the energy cost is seen. For local traffic a difference can be seen but it is

 104

small, because the communication energy cost is dominated by the energy for traversing
the routers.

The routing algorithm influences the communication energy cost by the detour cost
– higher detour cost entails more energy for communication. However, the detour cost
is negligibly small (see Section 5.6.2) and the influence of the routing algorithm on the
communication energy cost is insignificant.

Wst Int Bst Wst Int Bst Wst Int Bst
0

2

4

6

8

10

12

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

[p
J
/b

it
]

Locality

Mesh Torus Folded Torus

Virtual channel network, 10-by-10

BFS

DA

Wst Int Bst Wst Int Bst Wst Int Bst
0

2

4

6

8

10

12

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

[p
J
/b

it
]

Locality

Mesh Torus Folded Torus

Circuit switching network, 10-by-10

BFS

DA

Figure 5.12: Average communication energy cost in a 10-by-10 packet switching and
circuit switching networks

The right graph in Figure 5.12 presents the energy cost results for a circuit
switching network of size 10-by-10. The energy cost for the circuit switching network is
smaller compared to the results for the virtual channel network. That is because the
circuit switches are simpler than the routers in the virtual channel network and the
energy cost for their traversal is lower. However, the circuit switches are also less
flexible (see Chapter 2)

Figure 5.13 presents the energy cost results for a network of size 16-by-16 nodes.
The results differ from those for a 10-by-10 network, mainly for worst case traffic
locality. That difference is due to the dependency of the average communication
distance on the network size – increasing the network size increases the communication
distances and respectively, the energy cost. For local traffic this dependency is weak
and changing the network size does not noticeably change the energy cost. No data for
the BFS are present for worst locality in mesh because there are no successful samples
for 16-by-16 network (see Figure 5.9).

 105

Wst Int Bst Wst Int Bst Wst Int Bst
0

2

4

6

8

10

12

14

16

18

20

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

[p
J
/b

it
]

Locality

Mesh Torus Folded Torus

Virtual channel network, 16-by-16

BFS

DA

X

Wst Int Bst Wst Int Bst Wst Int Bst
0

2

4

6

8

10

12

14

16

18

20

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t

[p
J
/b

it
]

Locality

Mesh Torus Folded Torus

Circuit switching network, 16-by-16

BFS

DA

X

Figure 5.13: Average communication energy cost in a 16-by-16 packet switching and
circuit switching networks

5.6.4. Performance in the presence of BE traffic

So far we have been discussing the performance of the routing function assuming
that the system requests only GS. Indeed, the GS traffic accounts for 90% of all the
traffic in our system, but still there is 10% BE traffic that must also be served by the
network. The BE traffic has much lower resource requirements than the GS traffic. The
reason is not only that BE traffic uses a smaller fraction of the total traffic, but also the
fact that the BE traffic may share VCs. In contrast with the GS traffic where each GS
connection uses a separate, reserved path over the VCs, the BE traffic may share paths –
several BE connections may share a single VC for traversing a physical channel.
Therefore, to support the BE traffic at most one VC per physical channel is allocated for
BE connections.

Let us again consider a network with four VCs per physical channel (K=4), but this
time one VC per physical channel is used for BE traffic and the remaining three VCs
can be used by GS connections. In such a network the GS connections use physical
channels where the number of occupied VCs, ki, is 2, 3 or 4. Therefore, the throughput
guaranteed by a GS connection can be respectively b/2, b/3 or b/4 (see (5.1)). Results
for the number of successful samples in such a network are presented in Figure 5.14 and
Figure 5.15. The main conclusion that can be drawn is that when BE traffic is present,
virtual channel reservation cannot be used in mesh topology without traffic locality. The
other option is to increase the number of VCs to 5. The influence of the different factors
on the results is the same as for the results for GS traffic only.

 106

b/4 b/3 b/2 b/4 b/3 b/2
0

500

1000

"Worst" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

b/4 b/3 b/2 b/4 b/3 b/2
0

500

1000

"Intermediate" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

b/4 b/3 b/2 b/4 b/3 b/2
0

500

1000

"Best" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

BFS

DA

BFS

DA

BFS

DA

Figure 5.14: Number of successful samples in a 10-by-10 network with BE traffic
present

b/4 b/3 b/2 b/4 b/3 b/2
0

500

1000

"Worst" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

b/4 b/3 b/2 b/4 b/3 b/2
0

500

1000

"Intermediate" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

b/4 b/3 b/2 b/4 b/3 b/2
0

500

1000

"Best" locality

TH
R

S
u
c
c
e
s
s
e
s

Mesh Torus

BFS

DA

BFS

DA

BFS

DA

Figure 5.15: Number of successful samples in a 16-by-16 network with BE traffic
present

 107

5.7. Conclusion

In this chapter we evaluate how the performance of the virtual channel reservation
approach depends on several factors: traffic locality, routing function, network topology
and network size. For different combinations of these factors we investigate whether
virtual channel reservation can provide the guaranteed communication services
demanded by the streaming DSP applications in our system. We also estimate the
overhead that has to be introduced at system level to support the virtual channel
reservation. The average communication energy cost in the network is also estimated.

The results show that virtual channel reservation can be applied in a network with
four virtual channels per physical channel. However, the performance of the approach
depends on the traffic locality. Traffic locality weakens the effect of the network
topology and the network size on the performance, thus making the system more
scalable. By exploiting traffic locality the average communication energy cost can be
reduced by 50% to 70%. The results also show that for our applications traffic locality
is not difficult to achieve in systems of size 10-by10 and 16-by-16 nodes. Using a
straightforward mapping strategy we manage to achieve average distance of only two
hops, as 88% of the communications in the system are with neighbouring nodes.

Comparing the influence of the different factors, the network topology comes at a
second place. A network topology with a lower diameter and higher connectivity is
beneficial for the system performance when the system traffic does not show locality.
However, in a presence of traffic locality the network topology loses its influence. The
same is true for the network size. Hence, if the system manages to maintain the locality,
then simpler network topology can be used.

The routing algorithm has the weakest influence on the routing performance. With
or without load balancing, the routing function performs in a similar way. Hence, the
Breadth-first search algorithm is preferred over Dijkstra’s algorithm because of its
linear complexity.

The overhead introduced by the routing function is small enough to allow
application of virtual channel reservation at run-time. A routing function based on the
Breadth-first search algorithm routs a connection in less than a millisecond. It takes
only a few milliseconds to provide all the connections requested by an application in
our target domain.

We may conclude that the virtual-channel reservation approach is fast and efficient
enough to be applied for providing service guarantees at run-time. A direction for
improvement of our work is to investigate the possibilities for run-time traffic
optimisation, e.g. rerouting connections. Furthermore, the performance of the routing
function can be improved by employing a more advanced algorithm like A*.

 109

Chapter 6

Network integration*

This chapter discusses the how our network is integrated in

the system and how predictable system operation is

achieved. Instead of the traditional fully-static scheduled

system organisation we use an alternative approach which

reduces the application scheduling complexity such that

scheduling can be done at run-time as required in our

dynamic system.

6.1. Introduction

Until now we have discussed our NoC solution separately from the system that it
serves. We presented how the NoC operates and what communication services it
provides. In this chapter we move our attention to the operation of the entire system and
examine how the NoC integrates in it. However, an elaborate discussion of the high
level system organisation is beyond the scope of this thesis, so our intention is only to
describe how the system uses the network and to identify the costs incurred by
employing the NoC.

Since our multiprocessor system is dynamically reconfigurable, the run-time
overhead incurred by employing the network must be small enough not to compromise
the dynamic behaviour of the system. Since the system is intended for real-time
applications, it must be able to provide the applications with integral performance
guarantees by providing computation and communication guarantees. Starting a new
real-time application at run-time is the most time critical system task for a dynamic
system; the system must perform this task fast and transparently, as at the same time
performance has to be guaranteed to the application. For that reason, we discuss mostly
how the system starts new applications and how it guarantees application performance.

In most network-based SoCs proposed so far, predictable system operation is
achieved by employing some form of fully-static scheduling. In general, starting an
application on a statically scheduled systems is an NP-complete problem [69, 73]. Such
a high-complexity problem is acceptable for these SoCs since they are statically
configured and their configuration is computed at compile-time. However, since our
system is dynamic, part of the configuration is computed at run-time [72] and to keep
the time overhead low the computation must be of low complexity.

Instead of fully-static scheduling, in our system we use a different approach called
self-timed scheduling [73]. In combination with the simple structure of our streaming
application and the guaranteed services provided by the NoC, this system organisation

* Major parts of this chapter have been presented at the EUROMICRO conference on Digital System Design
[4] and at the Communicating Process Architectures Conference [8].

 110

reduces the computational complexity for scheduling of applications. Starting a real-
time application in our system requires only solving a small system of linear
inequalities. To the best of our knowledge, our system is the first NoC based SoC to
employ self-timed scheduling for achieving predictable system performance at low run-
time cost.

6.2. System operation

As discussed in Chapter 1, our system consists of an array of heterogeneous
processing elements (PE). Each PE is connected to the NoC and communicates with
other PEs only through the network. The system is centralised – there is one PE that acts
as a central authority and starts application tasks on the other PEs in the system. This
happens dynamically, at run-time, while some applications are already running in the
system. Since the system is controlled by the central PE, when we talk about an action
taken by the system we mean the action taken by the central PE.

At the system level the NoC is represented by the communication services it
provides; these are the guaranteed services (GS) and the best effort services (BE) of our
NoC. As discussed in Chapter 5, the system requests communication services by calling
a central routing function. For example, the system may call the function to provide a
GS connection between two PEs for the communication between the tasks running on
these PEs. (In Chapter 5 we argued that providing such a connection takes less than a
millisecond.) The routing function runs on the central PE, so requesting a connection
simply means calling a routine which does not involve network communication.

6.2.1. Starting an application

In general, to run an application on a multiprocessor system, four steps have to be
performed, as indicated in Figure 6.1: partitioning, compiling, mapping and scheduling.
In the first step, partitioning, the application is partitioned into tasks that will run in
parallel on separate PEs. In the second step, compiling, the separate tasks are compiled
for the target PE types. In the third step, mapping, the actual PEs where the tasks will
run are selected among the available suitable PEs in the system. In the fourth step,
scheduling, the proper timing behaviour of the application is provided such that its
performance requirements are met.

There are two criteria for application partitioning. The first one is grouping into
separate task parts of the application with computation demands that match the
capabilities of different specialised PEs. By matching computational demands with PE
capabilities the system performance and efficiency are improved. The second criterion
is minimisation of the communication between tasks. Application partitioning is an
aspect of parallel programming, which is a difficult and widely researched topic that is
beyond the scope of this thesis.

During compilation, besides the usual goals of code size and speed optimization,
the compiler is expected to provide information about the execution time of the
compiled task (in clock cycles). This information is needed during scheduling for
predicting the tasks timing behaviour. Compiler technology and execution time analysis
are also beyond the scope of this thesis.

When mapping an application efficiently, the optimisation criterion is improving
the communication locality by mapping communicating tasks on neighbouring PEs.
Finally, the objective of the application scheduling is to provide such a performance for

 111

the application tasks and communications between them that the required overall
performance is guaranteed.

Partitioning

Compiling

Mapping

Scheduling

Run

Application

Step 1

Step 2

Step 3

Step 4

Partitioning

Compiling

Mapping

Scheduling

Run

Application

Compile-
time

Run-time

Our dynamic
system

Static
system

Figure 6.1: Steps performed when starting an application

All the NoC based systems proposed so far are static (statically configured) [34,
52], which means that the four steps described above are performed at compile time. In
a static system the system configuration is generated and loaded into the system once,
before the system start up, and then it is used for the entire operation period of the
system. Performing all the preparations at compile time is advantageous, as the time and
resource limitations for computing the configuration is minimal. Hence, in static
systems the computational complexity of the four steps performed for starting an
application is not a critical issue.

In a dynamic system like our, however, applications are started at run-time so not
all the four preparation steps can be performed at compile time. As shown in Figure 6.1,
in contrast with static systems, our dynamic system performs mapping and scheduling at
run-time. Hence, these two steps must be performed fast and efficiently. Since mapping
and scheduling are performed by the SoC it self, therefore using limited computational
power and resources compared with the resources available at compile time, the
mapping and scheduling algorithms must be as simple as possible.

Fortunately, the structure of our applications simplifies mapping and scheduling in
our system. As discussed in Chapter 1, the applications in the system have a simple
pipeline structure. The simple application structure eases the mapping task compared to
applications with a more irregular structure since the mapping deals with fewer
dependencies between the tasks, thus with fewer constraints. Hence, we expect mapping
in our system to be faster and to achieve high locality. The latter was demonstrated in
Chapter 5 for a homogeneous system (all PEs are uniform). The mapping experiments
there show that the mapping procedure manages to reduce the distance of 88% of the
communications to one hop and to achieve an average communication distance in the
system of less than 2 hops (see Figure 5.4 to Figure 5.7).

 112

6.2.2. Scheduling approaches

Compared to a fully-static system, in our system application scheduling is
simplified thanks to a combination of applications with a simple structure and the
specific approach we take for providing predictable system operation. In a system with
fully-static scheduling all the computation and communication in the system is driven
by a global schedule; the start time and duration of all tasks and communications is
fixed by the schedule. To schedule a new application, the system has to recompute the
global schedule for all applications. This may be a simple task when the system is not
busy (no other applications are running), but in general when the system has been
running for some time, computing a schedule is a NP hard problem [69, 73]. Such a
complexity is already difficult to cope with in static systems where scheduling is
performed at compile time, but it is not acceptable for our dynamic system.

In our system we employ a technique, called self-timed scheduling [73], for
achieving predictable system operation. This technique does not require computation of
a global schedule, it relaxes the scheduling constraints compared to fully-static
scheduling and thus reduces the scheduling complexity.

Although applying a static schedule is sufficient for providing predictable system
and application performance, fully-static scheduling applies more restrictions on the
system operation than is necessary for achieving predictability. For example, if we
consider a video application, the required fixed frame rate at the output of the
application does not imply that a given pixel in the frame must be ready at the exact
time as is provided by the static schedule. It only implies that the pixel must be ready
any time before the frame release time. The fixed execution times in a fully-static
system also cause difficulties when the execution times are data dependent. To fit such
an application into a static schedule, the variations have to be compensated by
introducing data buffers that are appropriately sized for the specific application.

In contrast with fully-static scheduling, self-timed scheduling does not really
schedule the system operation, but the computation and communication is data driven;
tasks and communications are started when the required data is present and space is
available for storing the result. Self-timed scheduling only requires that the upper bound
on the task execution times and the communication times are known. In our system
these are not difficult to obtain because of the specific class of applications we are
interested in. The communication times are a direct function of the provided network
throughput guarantees and the amount of communicated data. Since the PEs are single
task processors and the tasks running on them do not interfere with other tasks, the task
execution times are the same us times provided by the compiler. The worst case
execution time of tasks running on a shared processor can also be derived [83].

The cost to pay for employing self-timed scheduling is a small amount of additional
hardware that provides the data driven operation. The additional hardware required
constitutes of handshake circuits that implement blocking read and blocking write for
data exchange between the NoC and the PEs. However, since a self-timed system
naturally handles variable (data dependent) execution times, it avoids the application
dependent buffering required in fully-static systems, so on the other hand self-timed
scheduling simplifies the architecture.

Another reason to prefer self-timed scheduling over fully-static scheduling is that
fully-static scheduling is difficult to apply in GALS (Globally-Asynchronous Locally-
Synchronous) systems. To work to a global schedule, the system must have a global
notion of time, which is missing in GALS systems because no global clock is

 113

distributed there. In contrast, self-timed scheduling does not require global notion of
time and so is suitable for GALS systems. The ability to apply the chosen scheduling
approach in a GALS system is advantageous since it is expected in the near future that
more and more systems will be designed as GALS systems because of the cost of the
global clock distribution in the future semiconductor technologies (see Chapter 1).

6.3. Self-timed operation

We continue by presenting how streaming applications run on our self-timed
system. Figure 6.2 presents a streaming pipeline application mapped on our system. The
application pipeline consists of n tasks, denoted as P1 to Pn, running on separate PEs.
The processed data items are transported between the PEs by the NoC. The NoC and the
PE exchange data through the PE local memory (MEM); the received data items are
loaded in the MEM and after processing they are read from the MEM and transmitted to
the next PE. The task running on a PE reads from the MEM the arrived data items,
processes them and stores the results back into the MEM. The data exchange between a
PE and the NoC is handled by a network interface (NI) unit which implements the
blocking read and write to the MEM needed to provide the self-timed behaviour. For
example, when the input data buffer reserved in the MEM for arriving data items is full,
the NI stops receiving and holds the next data item blocked in the network. This
respectively blocks the data item transmission in the previous PE. Similarly, the data
transmission is blocked when the output data buffer is empty and there is not yet a next
data item ready to be transmitted. In the same way a task running on a PE blocks when
the input data buffer in the MEM is empty or when the output data buffer is full.

Figure 6.2: A streaming application mapped on a multiprocessor architecture

The performance of the application is determined by the time the tasks need to
process a data item and by the time needed to communicate a data item between two
PEs (provided no blocking occurs). These times we call respectively processing and
communication time. To predict the application performance, all the processing and
communication times of the application must be known. When these times are data
dependent, their upper bound must be known.

Besides the processing and communication times, the application performance also
depends on whether processing and communication in a PE can be performed
simultaneously. The parallelism between processing and communication is restricted by
the MEM. Since all of the three operations receiving, processing and transmitting a data
item requires access to MEM, these operations can be performed in parallel only if
MEM supports parallel access. Based on the simultaneous access supported by the
MEM we can distinguish the following three cases of parallelism in a PE:

 114

i). single access – the MEM allows only one access at a time and so only one
operation can be performed at a time. The operations receive, process and transmit are
performed sequentially.

ii). double access – the MEM can be accessed by two entities simultaneously. The
processing and communication are performed in parallel.

iii). triple access – the MEM can be accessed by three entities simultaneously.
Receiving, processing and transmitting are performed in parallel.

To allow multiple accesses, the MEM can be implemented either as multi-port
memory or as multiple banks of single port memories. Thus, the three cases above
correspond to the following memory organisations: single-port MEM, dual-port MEM
and triple-port MEM or MEM consisting of single, two or three memory banks. In any
case, the cost of enabling more parallelism is a higher memory cost in terms of area and
energy. If separate memory banks are used, the number of banks and respectively the
area is proportional to the number of memory ports. In case of a single bank multi-port
memory, the area increase is even higher because besides of the larger memory size
needed, the memory complexity increases too. The energy cost of a memory access
scales linearly with the memory size [81].

To predict the application performance in a self-timed system (for the purposes of
scheduling) we build an application model that captures all the aspects that influence the
applications performance – the processing and communication times, the effect of
blocking due to the self-timed operation and the parallelism enabled by the PEs memory
organization. For modelling we use a standard modelling technique called homogeneous
synchronous data flow (HSDF) graphs, which we now briefly present.

6.4. HSDF graphs and MCM analysis

Homogeneous Synchronous Data Flow (HSDF) [50, 73] is a model of computation
suitable for describing parallel DSP applications. The model is based on a special type
of directed graphs, called HSDF graphs. A vertice of an HSDF graph is called an actor;
it models some activity. An actor is characterised by an execution time given as a label
of the actor. A graph edge represents a dependency between the actors at the end points
of the edge. The actors interact by exchanging tokens over the connecting edges. In
principle an edge behaves like an unbounded FIFO buffer where the tokens are stored.

When there is at least one token preset on each input edge of an actor, the actor is
executed (also called fired). After a time period equal to its execution time the actor
produces one token on each of its output edges. To provide that a second execution
cannot start before the first one has finished the actor is assigned a self-edge with a
single token.

Figure 6.3 shows an example HSDF graph that models a bounded FIFO buffer with
a capacity of two data items. The two actors model respectively the FIFO write and
FIFO read operations. Writing into the FIFO takes time ET1 and reading from the FIFO
takes time ET2 – these are the actors execution times. The data items that are written
into the FIFO arrive as tokens on the input edge IN and the data items that are read
depart as tokens on the edge OUT. The number of tokens on the cycle between the two
actors corresponds to the buffer capacity. Each token on the upper edge corresponds to
an empty buffer space and each token on the lower edge corresponds to a full buffer
space. When a token arrives on the edge IN, the actor Write is executed, consuming an
empty buffer space and producing a full buffer space. Subsequently, executing Read
consumes a full buffer space and produces an empty buffer space and a data item on the

 115

OUT edge. In the FIFO model shown, the data are read out of the buffer immediately
after they are written. In a more practical example additional input edges that enable the
execution of the actors may be present.

Figure 6.3: HSDF model of a FIFO buffer of capacity two data items

Given an HSDF graph, we can derive its throughput in terms of the number of
tokens processed per time unit by applying a standard analysis technique for
synchronous data flow models called Maximum Cycle Mean (MCM) analysis [15, 73].
MCM analysis examines all simple cycles in an HSDF graph G and determines their
cycle mean. The cycle mean of a simple cycle is defined as the ratio between the sum of
the execution times of all the actors on the cycle and the number of tokens on the cycle:

 (6.1)
)(

_
ctokens

ET

meancycle ci
i∑

∈= ,

Here c is a simple cycle in G, the sum is taken over all actors that belong to c. tokens(c)
gives the number of tokens on the cycle c. MCM analysis consists of calculating the
cycle mean for every simple cycle in the analysed graph G and selecting the maximum
calculated cycle mean. Thus, the MCM of a graph G is:

(6.2)

















=
∑
∈

∈)(
max

ctokens

ET

MCM ci

Gc

i

G ,

Here the max function is taken over all simple cycles in G. The cycle with the maximal
cycle mean is called the critical cycle, and its cycle mean determines the graph
throughput. The throughput of the analysed graph in [token/s] is the reciprocal of the
maximum cycle mean:

(6.3)

G

G
MCM

TH
1

=

As an example we calculate the throughput of the FIFO model from Figure 6.3. The
graph in Figure 6.3 contains three cycles – two self edges with one token and one cycle
with two tokens. The means of these cycles are ET1, ET2 and (ET1+ET2)/2 and the MCM
is therefore max(ET1, ET2, (ET1+ET2)/2). The graph throughput is then TH = 1/max(ET1,
ET2, (ET1+ET2)/2).

HSDF graphs have two important properties [16]: periodicity and monotonicity.

The periodicity property means that after a transient period in the beginning, the
execution of a strongly connected HSDF graph will exhibit periodic behaviour. The
monotonicity property means that the throughput of a HSDF graph is a non-decreasing

 116

function of the execution time of the actors, or in other words, decreasing these
execution times may only lead to equal or higher throughput. In our models the
execution times can vary, but we label the actors always with the worst case execution
times. Hence, according to the monotonicity property, by applying the MCM analysis
we derive the worst case throughput of the graph.

Applying MCM analysis requires finding all the simple cycles in the HSDF graph,
which depending on the graph might not be a simple task to perform at run-time.
However, in the case of our system, cycles are found and analysed already at compile
time, as at run-time only derived results are used. Thus, the more complicated part of
the modelling process is performed off-line and it is not an obstacle for the real-time
system operation.

6.5. Predicting throughput of an application

We use the HSDF model and apply MCM analysis for predicting the throughput of
streaming applications running on our system. We need this prediction in the scheduling
step (see Figure 6.1) to guarantee the throughput of the application being started. After
the mapping the application is modelled as a HSDF graph using the information about
the memory organization of the PEs where the application runs and the actual execution
times of the tasks.

In this section we present how the applications are modelled and their throughput is
derived. We first model a single application task running on a PE, considering the three
options for the PE memory organisation. Then we extend the model for a complete
application.

6.5.1. Throughput of a single application task

Consider a single application task running on a PE. As discussed earlier, we have
three options for the PE memory organization: single-port, dual-port and triple-port
memory. For each of the three cases we construct an HSDF model of a task and then we
apply MCM analysis on the model to derive the task throughput.

To model a task as an HSDF graph we need three actors: one for receiving a data
item, one for processing and one for transmitting (these are the three basic operations
performed by the PE). We refer to these actors as the receiving, processing and
transmitting actors. To the receiving and transmitting actors we also refer as the
communication actors.

We adopt the following notation. The processing actor of task i is denoted as Pi and
its processing time is denoted as PTi. The sending actor, which is the communication
actor with the next task, is denoted as Ci and its sending time is denoted as CTi.
Respectively, the receiving actor, which is the communication actor with the previous
task, is denoted as Ci-1 and its receiving time is denoted as CTi-1. The ratio between the
communication and processing times depends on the complexity of computation and the
amount of communicated data. For our system we expect the processing and
communication times to be of the same scale.

Single-port memory organisation

A single-port memory allows only one of the three actors to be executed at a time.
Following the data dependencies, the natural order in which the actors are executed is:
receiving, processing and transmitting. After each data item this cyclic pattern is

 117

repeated for the next data item. We model this task behaviour with the HSDF graph of
Figure 6.4. The graph contains one cycle with one token. The token in the cycle is
circling around the actors allowing only one of them to execute at a time. The token can
be interpreted as a grant for memory access – the actor that currently has the token has
access to the memory. The three self edges provide that an actor fires only after its
previous execution finishes.

Ci-1

Pi

Ci

CTi-1 CTi

PTi

Figure 6.4: An HSDF model of a task running on a PE with a single-port data memory

Applying MCM analysis we derive the throughput of the graph. From equations
(6.2) and (6.3) we find the MCM and the throughput of the graph in [token/s]:

(6.4)
()[]

iii

iiiiii

CTPTCT

CTPTCTCTPTCTMCM

++=

=++=

−

−−

1

111 ,,,max

(6.5)

iii CTPTCT
TH

++
=

−1

1

1

Since a grant for memory access is given for the time of processing/communicating
a single data item, this result is interpreted as the worst case throughput in [data item/s]
of the task i running on a PE with single-port data memory. From (6.5) it follows that to

guarantee a lower bound THR on the stage throughput (THR≤TH1), we must have that:

(6.6)

R

iii
TH

CTPTCT
1

1 ≤++−

This result is illustrated by the time-diagram in Figure 6.5. The diagram represents
one period of the task operation. In this period one data item is received, processed and
sent. To provide a throughput of THR, the operation period must be less than or equal to
1/THR, which is expressed by (6.6). The task operates as follows. The processing of a
data item (PTi) starts immediately after the data item is received (CTi-1). Because of
blocking induced by self-timing a waiting period (Wi,1) may be introduced after the
processing and before transmitting the data item (CTi) when the next stage is not yet
ready to receive. A waiting period (Wi,2) may also be introduced after transmitting the
data item when the previous stage is not immediately ready to send the next data item.

 118

Figure 6.5: One period of the operation of a PE with single-port memory

Dual-port memory organisation

On a PE with a dual-port memory two of the three actors can be executed at a time.
The PE is organized such that grants for the memory ports are given to the actors in a
cyclic fashion following the data dependencies. This behaviour is modelled also by the
graph in Figure 6.4, but this time with two tokens on the main cycle, each token
corresponding to a memory port. An example time-diagram of the PE operation is
presented in Figure 6.6. While the PE is processing the current data item, the NI
transmits the previously processed data item and then receives the next data item.
Because of blocking waiting times Wi,1, Wi,2 and Wi,3, may be introduced.

Figure 6.6: One period of the task operation on a PE with dual-port memory

Applying MCM analysis to the graph with two tokens, the throughput is:

(6.7)
















 ++
=

−
−

2
,,,max

1

1
1

2

iii

iii

CTPTCT
CTPTCT

TH

This is the worst case throughput in [data item/s] of the task i running on a PE with
dual-port memory. From (6.7) it follows that to guarantee a lower bound THR on the

stage throughput (THR≤TH2), the following system of inequalities must hold:

 119

(6.8)

R

i

R

i

R

i

R

iii

TH
CT

TH
PT

TH
CT

TH

CTPTCT

1

1

1

1

2

1

1

≤

≤

≤

≤
++

−

−

The first inequality in (6.8) states that the time for receiving, processing and
transmitting a data item must be less than two times the data arrival period. This is two
times longer than the time constraint in the single-port memory case. A comparison
between Figure 6.5 and Figure 6.6 shows that with a dual-port memory the PE has more
time to process a data item and hence can work at a lower frequency than with a single-
port memory. With a dual-port memory it is possible to achieve 100% PE utilization,
which is not possible with the single-port memory because of the alternation of
processing and communication. In the case of a dual-port memory the communication
times can also be longer than in the case of single-port memory. This means that
communication channels with lower throughput are needed to communicate the same
amount of data. Thus, the communication throughput demands are reduced and the NoC
traffic conditions are relaxed.

The organisation scheme of PE with a dual-port memory given here is one of
several possible; however it is the one achieving higher throughput.

Triple-port memory organisation

When a task is running on a PE with a triple-port memory, all three actors can
execute at the same time. The task operation in this case is illustrated by the example
time-diagram in Figure 6.7. The waiting times shown in the figure may be introduced
due to blocking.

Figure 6.7: One period of the operation of a PE with three-port memory

The HSDF graph that models the task operation is the same as in the previous two
cases, but now the graph cycle contains three tokens. Applying MCM analysis to this
graph, the task throughput is:

(6.9)
()iii CTPTCT

TH
,,max

1

1

3

−

=

 120

Equation (6.9) gives the worst case throughput in [data item/s] of task i running on
a PE with triple-port data memory. From (6.9) it follows that to guarantee a lower

bound THR on the task throughput (THR≤TH3), the following system of inequalities
must hold:

(6.10)

R

i

R

i

R

i

TH
CT

TH
PT

TH
CT

1

1

1
1

≤

≤

≤−

The triple-port memory relaxes the constraints on the execution times even further
than the dual-port memory case. The communications can be extended along the entire
period 1/THR and the required communication throughput can be reduced to the
minimum. It is also possible to achieve 100% PE utilisation.

6.5.2. Comparison

In all three cases of PE memory organization a task is modelled as a simple HSDF
graph and predicting the task performance requires only a straightforward analysis.
Since the graphs depend only on the PE memory organization and not on the specifics
of the application, the modelling and the analysis can be done off-line. What needs to be
done at run-time for predicting the task performance is simple: i) choosing the analysis
result associated with the memory organization of the PE where the task runs and ii)
substituting the actual processing and communication times.

Table 6.1 summarises the task performance results. For the three cases of memory
organisation the table gives the task worst case throughput and the constraints on the
execution times implied by a given application throughput bound THR.

Table 6.1: Summary of the results for a single pipeline stage running on a PE

R

iii
TH

CTPTCT
1

1 ≤++−
















 ++
=

−
−

2
,,,max

1

1
1

2

iii

iii

CTPTCT
CTPTCT

TH

R

iii

R

iii

TH
CTPTCT

TH

CTPTCT

1
,,

1

2

1

1

≤

≤
++

−

−

()iii CTPTCT
TH

,,max

1

1

3

−

= R

iii
TH

CTPTCT
1

,,1 ≤−

iii CTPTCT
TH

++
=

−1

1

1

Comparing the worst case throughput we have:

 121

(6.11) 321 THTHTH ≤< ,

which confirms the intuitively expected result that increasing the number of MEM ports
improves the PE performance. However, as discussed earlier, the memory area and
energy cost increase proportionally.

PE utilization

Considering system efficiency, it is desirable that the PEs are highly utilized. The

PE utilization ρ is defined as the fraction of the time the processor is busy processing
data items. For a periodic task running on a single-task PE, the PE utilization can be
defined as the ratio between the period PTi in which the PE processes a data item and
the data arrival period. For a real-time application with a throughput THR the average
data inter-arrival period is 1/THR. Thus:

(6.12) iR PTTH ∗=ρ

If two PEs are running the same task, the one with higher utilisation has more time
to perform the task. Hence, it can operate at a lower clock frequency which saves
energy. Therefore, higher PE utilisation is desirable also because it improves the system
power efficiency.

The maximal PE utilization that can be achieved for the different memory
organizations is derived by substituting (6.12) in the constraint inequalities given in
Table 6.1. The results are presented in Table 6.2.

Table 6.2: Maximal achievable processor utilization

A 100% PE utilisation can be achieved with a dual-port memory, but only with
appropriate constraints on the communication times. Employing three-port memory
increases the memory cost, but only reduces the communication throughput demands. A
100% PE utilization cannot be achieved with a single-port memory.

The PEs memory organisation is a system design time choice which influences the
throughput and the utilisation of the system. The information about the PEs memory
organisation is used at run-time for predicting the throughput of applications.

6.6. Throughput of the whole application

A model of the whole application is constructed by combining the separate models
of the application tasks. Since the applications have a pipeline structure, the task models
are just concatenated in a pipeline. In principle, the throughput of the application is
determined by the throughput of the slowest task in the pipeline.

 122

Figure 6.8 presents an example model of a pipeline of three tasks running on PEs
with single-port memory. The concatenation of the task models is done by merging the
sending and receiving actors of consecutive stages, which assumes that the sending and
receiving start and finish at exactly the same time. Such an assumption neglects the
network delay due to the network buffering. Although the network buffering is reduced
to minimum, the network still buffers a small amount of data (few words) and this
introduces a small delay between the moments when sending and receiving start at both
ends of a communication channel. However, neglecting this delay is justified when the
pipeline throughput is considered. The pipeline throughput is determined by the
operation rates of its stages. Introducing a delay in the inter-stage communications
brings offset in the stages operation periods, but does not change the operating rate of
the stages. Therefore, neglecting the propagation delay in the inter-stage
communications does not change the pipeline throughput result.

Communication delay should be taken into account when the pipeline latency is
critical. To express the delay explicitly in the application HSDF graph, the graphs of the
separate tasks are connected serially by introducing a new actor between the sending
and receiving actors. The execution time of the new actors equals the delay of the
communicate channels between the tasks.

C0

P1

C1

P2

C2

P3

C3

CT0 CT1 CT2 CT3

PT1 PT2 PT3

Figure 6.8: An HSDF model of an application of three tasks running on PEs with a
single-port data memory merging the send of the previous with the receive of the next

The throughput of the application in Figure 6.8 is found by applying equation (6.5)
for each of the three tasks in the pipeline:

(6.13)
[]iii

i
CTPTCT

TH
++

=
−

∈
1

]3,1[

1
max

1

Respectively, the constraint inequalities implied by a given throughput bound THR
are derived by applying inequality (6.6) for each of the three tasks:

(6.14)

R

iii
TH

CTPTCT
1

1 ≤++− , for i∈{1,2,3}

If the system of inequalities (6.14) is satisfied we guarantee that the application
throughput is greater than or equal to THR.

When the application runs on PEs of different type, then the equations and
constraint inequalities associated with the corresponding PE types are selected. Thus, to
predict the application performance at run-time we only select the appropriate equations
and substitute in them the actual execution times. To guarantee the application

 123

performance, at run-time we select the appropriate constraint inequalities and solve the
constructed system of inequalities to find the required upper bounds for the processing
and communication times. These bounds are then provided by the system by requesting
proper communication services from the NoC and by configuring the PEs clock
frequencies.

In conclusion, scheduling an application at run-time on a self-timed system requires
solving a small system of linear inequalities. Solving such system is a task of square
complexity which in combination with the small system size (less than ten variables)
will result in much lower overhead than the overhead for computing a global schedule
in a fully-static scheduled system (an NP hard problem). Therefore, because of its lower
runtime overhead self-timed system organisation is more suitable for dynamic systems
than the full-static organisation.

6.7. Example

We illustrate with an example how applications are scheduled on a self-timed
system. For the example we use again the HiperLAN/2 receiver which we schedule on
our system. How the HiperLAN/2 receiver is partitioned to run on our system is
discussed in [67]. The application is partitioned in a pipeline of three tasks shown in
Figure 6.9. The tasks are compiled for Montium processing tiles [39] and the processing
times per data item of 256 bytes reported by the compiler are given in the figure (in
clock cycles). The receiver has been mapped on Montium tiles and our objective now is
to schedule it, or in other words to guarantee its real-time operation.

The HiperLAN/2 receiver processes information received on a wireless

communication channel. Every 4 µs a new data item arrives on the input of the receiver
and the receiver must be ready to process it. Thus, the data inter-arrival period defines
the real-time constraint on the receiver operation. To be able to process all arriving data

items, the receiver must have a throughput of at least THR = 1/4 µs = 250 [data
item/ms].

Figure 6.9: Pipeline of a HiperLAN/2 receiver

To guarantee this throughput for the receiver, we first construct a system of
constraint inequalities. We select the inequalities associated with the memory
organisation of the used PEs. In our case, the Montium tiles have single port memories,
so we construct the system by combining three inequalities (6.6):

(6.15)

R

iii
TH

CTPTCT
1

1 ≤++− , for i∈{1,2,3}

 124

If we provide that (6.15) is satisfied, then the receiver throughput is always at least THR
and the receiver real-time operation is guaranteed.

The Montium tiles are set to run at a fixed clock frequency of 100 MHz. Hence, the

actual task execution times are PT1=0.67 µs, PT2=2.04 µs and PT3= 1.1 µs. Substituting
this in (6.15) together with THR=250 [data item/ms] we have:

(6.16)

sCTCT

sCTCT

sCTCT

µ

µ

µ

9.2

96.1

33.3

32

21

10

≤+

≤+

≤+

Any solution of the system of inequalities (6.16) gives a set of worst case
communication times for which the required application throughput THR is guaranteed.

One possible solution is: CT0=2.35µs, CT1=0.98µs, CT2=0.98µs, CT3=1.92µs. In
practice, additional optimisation constraints can be considered when deriving the
communication times. For example, minimising the mean communication throughput
requested for the application. Having the communication times and the size of the
communicated data items we calculate the throughput of the communication channels
that has to be requested from the NoC. The communication channels are requested by
calling the central routing function (see Section 5.3) which provides a channel in less
than a millisecond.

Additional efforts can be made also for improving the PE utilisation. With the

processing times given above and THR=4 µs, the utilisation of the tiles is ρ1=17%,

ρ2=51%, ρ3=28%. The utilisation can be improved by adjusting the PEs clock
frequencies and the communication throughput. However, since the tiles use a single-
port memory, it is not possible to achieve 100% tile utilisation.

6.8. Conclusion

We presented how our Network-on-Chip (NoC) can be integrated in a system such
that predictable system operation is provided. The main difference between our network
and other networks is in the way in which predictable operation is achieved. While other
NoC based systems use fully-static scheduling leading to high to scheduling
complexity, we employ self-timed scheduling. In contrast to fully-static system, a self-
timed system in combination with the simple structure of our applications reduces the
scheduling complexity, which allows application scheduling to be done at run-time as
required for our dynamic system. Self-timed organisation is also more suitable for
GALS systems. Our network is directly fit for self-timed system organisation. To the
best of our knowledge our system is the first NoC based systems that employs self-
timed scheduling.

The PE memory organisation is a system design time choice which influences the
performance and utilisation of a self-timed system. We discussed three cases of memory
organisation: single-, dual- and triple-port memory organisation. The more memory
ports, the higher the application performance and the PE utilisation. However, the
memory cost (in terms of area and energy) also increases with the number of ports. The
lowest cost at which 100% PE utilisation can be achieved is using dual-port memory
which doubles the memory size compared to single-port memory.

The results presented in this chapter confirm that the NoC solution we propose is
able support the overall operation of our dynamic real-time system. It is possible to

 125

achieve a predictable operation and to guarantee performance at a system level as the
overhead for providing performance guarantees is low enough to allow dynamic system
operation.

 127

Chapter 7

Conclusion

The relentless development of semiconductor technology in the last four decades

has resulted in integrated circuits (ICs) with higher and higher transistor density, thus
allowing chips to accommodate more and more functionality. Today we can integrate a
complete system on a single die; such a system is known as a System-on-Chip (SoC).
However, the high density reached in the recent years cause problems due to the smaller
dimensions of IC features. These problems complicate the SoC design and begin to
hamper the technology utilisation. The main problems, as discussed in Chapter 1, are:

- the signal integrity problem – low performance global wires,
- the design productivity gap – high design complexity,
- the clock distribution problem – expensive global clock distribution.

In this thesis we investigate a new approach for organising the global communications
of a SoC. This approach provides a general solution for the above three problems. We
propose a network-on-chip (NoC) architecture – an on-chip communication solution
that matches the on-chip global communication requirements with the constraints of the
underlying VLSI technology. We investigate the NoC concept in the context of a
specific class of SoC architectures – a multiprocessor SoC for streaming Digital Signal
Processing (DSP) applications.

The novelty of our NoC is its ability to operate in a dynamic environment while
providing guaranteed services (GS) as well as best effort (BE) services. We evaluate our
solution by examining it from different perspectives: from low level implementation
details, via its architecture, to the integration into a high level system organisation. The
results confirm that we succeeded in finding a practical NoC solution which has a run-
time overhead that is low enough to support dynamic system operation.

In Chapter 1 we define three research questions to guide us through our
investigation. The first question is:

1. What network techniques are appropriate to minimize the network overhead

while maintaining satisfactory performance?

It asks for appropriate networking techniques for building a NoC which match the
constraints of the underlying technology with the system requirements. In search for an
answer we review the available techniques and focus on virtual channel flow control.
Virtual channel flow control is an efficient flow control mechanism which requires a
small buffer size, hence has a small router area, and has an acceptable performance for
our application domain. It also allows for an arbitrary packet length, which is
convenient when handling streaming traffic. Our NoC solution is one of the first to
employ virtual channel flow control (Chapter 2).

The main challenge for the network design is to provide support for GS and BE
traffic. While most NoCs proposed so far achieve that by combining two separate

 128

network solutions, one supporting GS and one supporting BE traffic, by using virtual
channels (VCs) we manage to provide a single integrated solution capable of supporting
both traffic types. To achieve this result we propose a router architecture with a
predictable performance. We combine the router architecture with a virtual channel
reservation scheme that extends the predictability at the network level. Thus, our
network is able to provide GS as well as BE services (Chapter 3).

Our second research question is:

2. What is the overhead and the performance of a NoC architecture?

This asks for a study into the actual NoC performance and all the costs incurred by
employing our NoC. This includes the implementation cost as well as the exploitation
costs, e.g. system level support.

Although VCs complicate the network routers, we demonstrate that by using
appropriate design techniques we can achieve an acceptable area overhead and
satisfactory performance. We propose an efficient router design which reduces the
implementation area of a virtual channel router, making it comparable to the area of

other NoC solutions. With our design, the area of a router in 0.13 µm technology ranges
from 0.05 – 0.25 mm2 depending on the router parameters. Compared to the area of the
processing elements in the system, the network area overhead is estimated at only 5 –
15%. The achieved channel throughput is several Gbit/s, enough to satisfy the system
demands in our application domain. The implementation results also show that the
router area is most sensitive to the size of the buffers while the router performance is
most sensitive to the number of VCs (Chapter 4).

Our virtual channel reservation approach for providing service guarantees requires a
centralised system coordination, as do all other proposed NoC solutions. However, the
central support required by our solution is lighter compared to the other solutions. Our
approach reduces the typical NP-complexity of the support tasks to at most quadratic
complexity. The light weight support enables our approach to be applied at run-time, for
a dynamic environment. To the best of our knowledge our NoC is the first one that is
able to provide guaranteed services requested at run-time (Chapter 5).

The third question we define is:

3. What is the optimal use of the NoC?

This question addresses the overall system operation. To answer it we investigate the
operational aspects of our network and how the network can be integrated into a system.

The application of virtual channel reservation for providing service guarantees is
restricted to a system where the applications have a rather simple structure and where
they generate simple traffic patterns, which is the case in our target application domain.
For systems where the applications have a simple structure, the virtual channel NoC is
an area efficient solution because it requires less buffer space than other networking
techniques. However, with more complex application structures the traffic patterns get
more complicated and thus need more network resources. Satisfying these needs more
virtual channels are needed, and therefore the virtual channel NoC rapidly increases in
area, its performance deteriorates and so it loses its advantages. For systems where the
applications have a complex structure, TDM (time-division multiplexing) is a more
area-effective approach for providing guaranteed services.

 129

The performance of the virtual channel reservation approach is strongly influenced
by the communication locality. Locality makes the performance of the approach less
sensitive to the network size, thus it improves the scalability. Furthermore, by
optimising the communication locality the communication energy cost can be reduced
up to three times (Chapter 5).

Having a NoC that is able to provide service guarantees at run-time is a necessary
but not a sufficient condition for building a predictable system for a dynamic
environment. To find out whether such a system is feasible, we investigate whether the
multiprocessor system can be organised such that seamless integration and efficient use
of the NoC are achieved, and whether the overhead for system support allows dynamic
operation. The results present evidence that a self-timed system organisation in
combination with the simple structure of our applications reduces the overhead for
system scheduling. Compared to the fully-static approach used so far in NoC based
systems, self-timed organisation reduces the computational complexity for scheduling
real-time applications from exponential to polynomial. This makes self-timed systems
more suitable for dynamic operation than the fully-static systems. To the best of our
knowledge, the system we propose is the first NoC based SoC that employs self-timed
scheduling (Chapter 6).

Future work

We may conclude that the NoC we propose is a practical communication solution
for a dynamic multiprocessor system for streaming DSP applications. It is a solution
that can be built at an acceptable cost. Nevertheless, there are many possibilities to
enhance the solution and prepare it to handle the future growth of the system size.

By providing structured, regular and scalable chip layout our NoC solves the signal
integrity problem and facilitates the migration of complex SoC designs to the next
generations of semiconductor technologies. However, to secure the successful NoC
application in future, scalability must also be provided on a higher system level. The
performance of our NoC solution, as well as any network solution, is dependent on the
traffic locality. In our system traffic locality is provided by the application mapping
function. Hence, it needs to be investigated how different mapping strategies behave
when the system size grows and how mapping can provide better traffic locality in
future. The same applies for the traffic routing strategies, although routing performance
is significantly improved by the traffic locality. In this respect, the relation between
application mapping and traffic routing must be investigated in order to find out
whether information exchange between them can improve the overall network
performance and scalability.

In our work we discussed only the basic operation of a dynamic system, i.e. starting
and terminating applications at run-time. Obviously, much more can be done at run-time
for improving the system and network efficiency. For example, it needs to be
investigated what strategies for run-time system load optimisation and network traffic
optimisation can be applied and how these strategies can be implemented to run as
background optimisation routines.

By providing system modularity our NoC solution helps narrowing the design
productivity gap. Thanks to the modularity, modifying or adding system modules leads
to minimal disturbances in the rest of the system. However, to further facilitate the
modules integration we have to define a standard interface between the network and the
modules. Standard module interfaces have already been established for buses and it

 130

needs to be examined whether they can be directly applied or adapted for NoC based
design.

While our NoC provides the two basic classes of services needed, guaranteed and
best effort services, there is a variety of higher level network services that can be built
on top of these two basic classes. By providing such higher level services the network
can further simplify the modules integration. Hence, it needs to be investigated what
higher level services can be built to match these services to the services needed by the
applications and the system.

One aspect of the NoC integration which needs special attention is whether the NoC
can facilitate post manufacturing system testing. The systems being built today are
constantly increasing in size and complexity and that makes the system testing and
verification a formidable task. As a part of the system the NoC also needs to be tested,
so it is desirable for this test to be as simple as possible. Hence, it is worth investigating
whether particular network features can simplify this test. Furthermore, serving as a
global communication infrastructure, the NoC provides communication access to most
of the system modules and so plays an important role in the module testing. This role
needs to be investigated to find out whether the NoC can facilitate the testing of system
modules.

What has been said for the post manufacturing test is also true for the application
development and debugging. The higher application complexity and the system
parallelism make application development and verification a complex task. Although
applications are most often developed in a system simulation environment, practical
experience shows that application debugging on a real system can never be completely
avoided. Understanding the reason of an unexpected application malfunctioning can be
very difficult in a large multiprocessor system and any help in this direction is desirable.
As a global communication infrastructure the NoC may be able to improve visibility of
the system internals by making them observable. That is another network aspect that
needs to be investigated.

Considering the NoC implementation, a definite direction for improvement is to
replace the current synchronous design with an asynchronous one. This will enable our
system to operate in Globally-Asynchronous Locally-Synchronous systems and thus to
avoid the clock distribution problem. The transition from a synchronous to an
asynchronous design is made possible by the fact that our NoC employs only techniques
that do not rely on global clock distribution.

The NoC concepts we discuss in this thesis are the first steps in a new direction for

SoC design. The NoC based systems are still in their infancy and have a long way to go
before they establish themselves as a reliable practical solution. However, our work and
the work of others confirm that the direction is right and motivates us to continue
investigating the potential of NoC based multiprocessor systems. The knowledge we
gain studying these systems prepares us to face the next generations of very large SoC
designs.

 131

Bibliography

Publications

[1] N. Kavaldjiev and G. J. M. Smit, "An energy-efficient Network-on-Chip for a
heterogeneous tiled reconfigurable System-on-Chip," in Proceedings of the

IEEE EUROMICRO Symposium on Digital System Design (DSD'04), Rennes,
France, 2004, pp. 492-498.

[2] N. Kavaldjiev and G. J. M. Smit, "A Survey of Efficient On-chip
Communications for SoC," in Proceedings of the PROGRESS 2003 Embedded

Systems Symposium, Nieuwegein, the Netherlands, 2003, pp. 1-12.

[3] N. Kavaldjiev, G. J. M. Smit, and P. G. Jansen, "Two Architectures for On-
chip Virtual Channel Router," in Proceedings of the PROGRESS 2004

Embedded Systems Symposium, Nieuwegein, the Netherlands, 2004, pp. 96-
102.

[4] N. Kavaldjiev, G. J. M. Smit, and P. G. Jansen, "Throughput of Streaming
Applications Running on a Multiprocessor Architecture," in Proceedings of the

IEEE EUROMICRO Symposium on Digital System Design (DSD'05), Porto,
Portugal, 2005, pp. 350-353.

[5] N. Kavaldjiev, G. J. M. Smit, and P. G. Jansen, "A Virtual Channel Router for
On-chip Networks," in Proceedings of the IEEE International System-on-Chip

Conference (SOCC'04), Santa Clara, California, USA, 2004, pp. 289-293.

[6] N. Kavaldjiev, G. J. M. Smit, P. G. Jansen, and P. T. Wolkotte, "A Virtual
Channel Network-on-Chip for GT and BE traffic," in Proceedings of the IEEE

Computer Society Annual Symposium on VLSI (ISVLSI'06), Karlsruhe,
Germany, 2006, pp. 211-216.

[7] N. Kavaldjiev, G. J. M. Smit, P. T. Wolkotte, and P. G. Jansen, "Providing
QoS Guarantees in a NoC by Virtual Channel Reservation," in Proceedings of

the International Workshop on Applied and Reconfigurable Computing (ARC

2006), Delft, The Netherlands, 2006, pp. 299-310.

[8] M. H. Wiggers, N. Kavaldjiev, G. J. M. Smit, and P.G. Jansen, "Architecture
Design Space Exploration for Streaming Applications Through Timing
Analysis," in Proceedings of the Communicating Process Architectures

Conference, Eindhoven, the Netherlands, 2005, pp. 219-233.

[9] P. T. Wolkotte, G. J. M. Smit, N. Kavaldjiev, J. E. Becker, and J. Becker,
"Energy Model of Networks-on-Chip and a Bus," in Proceedings of the

International Symposium on System-on-Chip (SoC'05), Tampere, Finland,
2005, pp. 82-85.

 132

References

[10] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A. Zeferino,
"SPIN: A Scalable, Packet Switched, On-Chip Micro-Network," in
Proceedings of the Design, Automation and Test in Europe Conference

(DATE'03), Munich, Germany, 2003, pp. 70-73.

[11] S. B. Akers and B. Krishnamurthy, "A group-theoretic model for symmetric
interconnection networks," IEEE Transactions on Computers, 38 (4), 1989, pp.
555-566.

[12] A. Andriahantenaina and A. Greiner, "Micro-network for SoC: implementation
of a 32-port SPIN network," in Proceedings of the Design, Automation and

Test in Europe Conference and Exhibition (DATE'03), 2003, pp. 1128-1129.

[13] K. V. Anjan and T. M. Pinkston, "An efficient, fully adaptive deadlock
recovery scheme: DISHA," in Proceedings of the 22nd annual international

symposium on Computer architecture, S. Margherita Ligure, Italy, 1995, pp.
201-210.

[14] K. A. Arvind, D. Chiou, J. C. Hoe, C. Kozyrakis, S.-L. Lu, M. Oskin, D.
Patterson, J. Rabaey, and J. Wawrzynek, "RAMP: Research Accelerator for
Multiple Processors - A Community Vision for a Shared Experimental Parallel
HW/SW Platform," University of California, Berkeley, Technical Report
UCB//CSD-05-1412, September 2005.

[15] F. L. Baccelli, G. Cohen, and G. J. Olsder, Synchronization and linearity: an

algebra for discrete event systems. New York: John Wiley & Sons, 1993.

[16] M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, M. Pastrnak, and J. v.
Meerbergen, "Predictable embedded multi-processor system design," in
Proceedings of the 8th International workshop on software and compilers for

embedded systems (Scopes 2004), Amsterdam, the Netherlands, 2004, pp. 77-
91.

[17] L. Benini and G. De Micheli, "Networks on chips: a new SoC paradigm,"
Computer, 35 (1), 2002, pp. 70-78.

[18] T. Bjerregaard and J. Sparso, "A router architecture for connection-oriented
service guarantees in the MANGO clockless network-on-chip," in Proceedings

of the Design, Automation and Test in Europe Conference and Exposition

(DATE 2005), Munich, Germany, 2005, pp. 1226-1231.

[19] D. M. Chapiro, "Globally-Asynchronous Locally-Synchronous systems," Ph.D.
thesis, Stanford University, 1985.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

algorithms, 2 ed. Cambridge, Massachusetts: MIT Press, 2001.

[21] W. Dally, "Virtual-channel flow control," IEEE Transactions on Parallel and

Distributed Systems, 3 (2), 1992, pp. 194-205.

[22] W. Dally, "Performance Analysis of k-ary n-cube Interconnection Networks,"
IEEE Transactions on Computers, 39 (6), 1990, pp. 775-785.

 133

[23] W. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn, J. Gummaraju, M. Erez,
N. Jayasena, I. Buck, T. Knight, and U. Kapasi, "Merrimac: Supercomputing
with Streams," in Proceedings of the ACM/IEEE conference on

Supercomputing (SC'03), Phoenix, Arizona, 2003, pp. 35-42.

[24] W. Dally and C. L. Seitz, "Deadlock-free message routing in multiprocessor
interconnection networks," IEEE Transactions on Computers, 36 (5), 1987, pp.
547-553.

[25] W. Dally and B. Towles, "Route packets, not wires: on-chip interconnection
networks," in Proceedings of the 38th Conference on Design Automation

(DAC'01), Las Vegas, NV, 2001, pp. 684-689.

[26] W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Xanthopoulos, "The
Reliable Router: A Reliable and High-Performance Communication Substrate
for Parallel Computers," in Proceedings of the First International Workshop on

Parallel Computer Routing and Communication, 1994, pp. 241-255.

[27] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection

Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[28] J. G. Delgado-Frias and G. B. Ratanpal, "A VLSI crossbar switch with
wrapped wave front arbitration," IEEE Transactions on Circuits and Systems I:

Fundamental Theory and Applications, 50 (1), 2003, pp. 135-141.

[29] A. M. Despain and D. A. Patterson, "X-Tree: A tree structured multi-processor
computer architecture," in Proceedings of the 5th annual symposium on

Computer architecture, 1978, pp. 144-151.

[30] J. Draper and G. Joydeep, "A comprehensive analytical model for wormhole
routing in multicomputer systems," Journal of Parallel and Distributed

Computing, 23 (2), 1994, pp. 202-214.

[31] J. Duato, "A New Theory of Deadlock-Free Adaptive Routing in Wormhole
Networks," IEEE Transactions on Parallel and Distributed Systems, 4 (12),
1993, pp. 1320-1331.

[32] T. Felicijan and S. Furber, "An Asynchronous On-Chip Network Router with
Quality-of-Service (QoS) Support," in Proceedings of the IEEE International

System-on-Chip Conference (SOCC'04), Santa Clara, California, 2004, pp.
274-277.

[33] C. J. Glass and L. M. Ni, "The turn model for adaptive routing," Journal of the

ACM (JACM), 41 (5), 1994, pp. 874-902.

[34] K. Goossens, J. Dielissen, and A. Radulescu, "Ethereal network on chip:
concepts, architectures, and implementations," IEEE Design & Test of

Computers, 22 (5), 2005, pp. 414-421.

[35] P. Gupta and N. McKeown, "Designing and implementing a fast crossbar
scheduler," IEEE Micro, 19 (1), 1999, pp. 20-28.

[36] A. Hansson, K. Goossens, and A. Radulescu, "A unified approach to
constrained mapping and routing on network-on-chip architectures," in
Proceedings of the 3rd IEEE/ACM/IFIP International Conference on

 134

Hardware/Software Codesign and System Synthesis, Jersey City, NJ, USA,
2005, pp. 75-80.

[37] P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths," IEEE Transactions on Systems

Science and Cybernetics SSC4, (2), 1968, pp. 100–107.

[38] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson, J. Oberg,
P. Ellervee, and D. Lundqvist, "Lowering power consumption in clock by
using globally asynchronous locally synchronous design style," in Proceedings

of the 36th Design Automation Conference, 1999, pp. 873-878.

[39] P. M. Heysters, "Coarse-Grained Reconfigurable Processors," Ph.D. thesis,
University of Twente, 2004.

[40] P. M. Heysters, G. J. M. Smit, and E. Molenkamp, "A Flexible and Energy-
Efficient Coarse-Grained Reconfigurable Architecture for Mobile Systems,"
Journal of Supercomputing, 26 (3), 2003, pp. 283-308.

[41] R. Ho, K. Mai, and M. Horowitz, "Efficient on-chip global interconnects," in
Proceedings of the Symposium on VLSI Circuits, 2003, pp. 271 - 274.

[42] R. Ho, K. W. Mai, and M. A. Horowitz, "The future of wires," Proceedings of

the IEEE, 89 (4), 2001, pp. 490-504.

[43] P.-C. Hu and L. Kleinrock, "A dynamic timeout scheme for wormhole routing
networks," in Proceedings of the IEEE International Conference on

Communications, 1997, pp. 1406 - 1410.

[44] P.-C. Hu and L. Kleinrock, "An Analytical Model for Wormhole Routing with
Finite Size Input Buffers," in Proceedings of the 15th International Teletraffic

Congress, 1997, pp. 549-560.

[45] A. Jantsch and H. Tenhunen, Networks on Chip: Kluwer Academic Publishers,
2003.

[46] A. B. Kahng, "Design technology productivity in the DSM era," in
Proceedings of the Asia and South Pacific Design Automation Conference

(ASP-DAC 2001), 2001, pp. 443-448.

[47] P. Kermani and L. Kleinrock, "Virtual Cut-Through: A New Computer
Communication Switching Technique," Computer Networks, 3, 1979, pp. 267-
286.

[48] L. Kleinrock, Queueing Systems, Volume II: Computer Applications, vol. 2.
New York: John Wiley & Sons, Inc., 1976.

[49] E. A. Lee, "Building Unreliable Systems out of Reliable Components: The
Real Time Story," EECS Department, University of California, Berkeley,
Technical report UCB/EECS-2005-5, October 2005.

[50] E. A. Lee and D. G. Messerschmitt, "Synchronous Data Flow," in Proceedings

of the IEEE, 1987, pp. 1235-1245.

 135

[51] C. E. Leiserson, "Fat-trees: universal networks for hardware-efficient
supercomputing," IEEE Transactions on Computers, 34 (10), 1985, pp. 892-
901.

[52] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, "An architecture and
compiler for scalable on-chip communication," IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 12 (7), 2004, pp. 711-726.

[53] D. H. Linder and J. C. Harden, "An adaptive and fault tolerant wormhole
routing strategy for k-ary n-cubes," IEEE Transactions on Computers, 40 (1),
1991, pp. 2-12.

[54] N. McKeown, "The iSLIP scheduling algorithm for input-queued switches,"
IEEE/ACM Transactions on Networking, 7 (2), 1999, pp. 188-201.

[55] J. D. Meindl, "Interconnect opportunities for gigascale integration," IEEE

Micro, 23 (3), 2003, pp. 28 - 35.

[56] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, "Guaranteed Bandwidth
Using Looped Containers in Temporally Disjoint Networks within the
Nostrum Network on Chip," in Proceedings of the Design, Automation and

Test in Europe Conference (DATE'04), Paris, France, 2004, pp. 890-895.

[57] G. E. Moore, "Cramming More Components Onto Integrated Circuits,"
Electronics, 38 (8), 1965, pp. 114-117.

[58] J. Muttersbach, T. Villiger, and W. Fichtner, "Practical design of globally-
asynchronous locally-synchronous systems," in Proceedings of the 6th

International Symposium on Advanced Research in Asynchronous Circuits and

Systems (ASYNC 2000), Eilat, Israel, 2000, pp. 52-59.

[59] L. M. Ni and P. K. McKinley, "A survey of wormhole routing techniques in
direct networks," Computer, 26 (2), 1993, pp. 62-76.

[60] J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, Interconnect-Centric Design

for Advanced SOC and NOC: Kluwer Academic Publishers, 2004.

[61] L.-S. Peh and W. J. Dally, "Flit-reservation flow control," in Proceedings of

the Sixth International Symposium on High-Performance Computer

Architecture (HPCA-6), 2000, pp. 73-84.

[62] L.-S. Peh and W. J. Dally, "A delay model for router microarchitectures,"
IEEE Micro, 21 (1), 2001, pp. 26-34.

[63] L. S. Peh and W. J. Dally, "A delay model and speculative architecture for
pipelined routers," in Proceedings of the Seventh International Symposium on

High-Performance Computer Architecture (HPCA-7), 2001, pp. 255-266.

[64] M. J. Pertel, "Mesh Distance Formulae," California Institute of Technology,
Pasadena, CA, Technical report Caltech-CS-TR-92-05, March 1992.

[65] F. P. Preparata and J. Vuillemin, "The cube-connected cycles: a versatile
network for parallel computation," Communications of the ACM, 24 (5), 1981,
pp. 300-309.

 136

[66] A. Radulescu, J. Dielissen, S. G. Pestana, O. P. Gangwal, E. Rijpkema, P.
Wielage, and K. Goossens, "An efficient on-chip NI offering guaranteed
services, shared-memory abstraction, and flexible network configuration,"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 24 (1), 2005, pp. 4-17.

[67] G. K. Rauwerda, P. M. Heysters, and G. J. M. Smit, "Mapping Wireless
Communication Algorithms onto a Reconfigurable Architecture," Journal of

Supercomputing, 30 (3), 2004, pp. 263-282.

[68] C. L. Seitz, "The Hypercube Communications Chip," Department of Computer
Science, California Institute of Technology, Display File 5182: DF:85, March
1985.

[69] B. A. Shirazi, A. R. Hurson, and K. M. Kavi, Scheduling and load balancing in

parallel and distributed systems. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1995.

[70] D. Siguenza-Tortosa, T. Ahonen, and J. Nurmi, "Issues in the development of a
practical NoC: the Proteo concept," Integration, the VLSI Journal, 38 (1),
2004, pp. 95-105.

[71] L. T. Smit, "Energy-Efficient Wireless Communication," Ph.D. thesis,
University of Twente, 2004.

[72] L. T. Smit, J. L. Hurink, and G. J. M. Smit, "Run-time Mapping of
Applications to a Heterogeneous SoC," in Proceedings of the International

Symposium on System-on-Chip, 2005, pp. 78-81.

[73] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling

and Synchronization. New York, Basel: Marcel Dekker, 2000.

[74] C. B. Stunkel, D. G. Shea, B. Aball, M. G. Atkins, C. A. Bender, D. G. Grice,
P. Hochschild, D. J. Joseph, B. J. Nathanson, R. A. Swetz, R. F. Stucke, M.
Tsao, and P. R. Varker, "The SP2 high-performance switch," IBM System

Journal, 34 (2), 1995, pp. 185-204.

[75] H. Sullivan, T. R. Bashkow, and D. Klappholz, "A Large Scale, Homogenous,
Fully Distributed Parallel Machine," in Proceedings of the 4th annual

symposium on Computer architecture, 1977, pp. 118-124.

[76] D. Sylvester and K. Keutzer, "A global wiring paradigm for deep submicron
design," IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 19 (2), 2000, pp. 242-252.

[77] Y. Tamir and H. C. Chi, "Symmetric crossbar arbiters for VLSI
communication switches," IEEE Transactions on Parallel and Distributed

Systems, 4 (1), 1993, pp. 13-27.

[78] N. Thepayasuwan and A. Doboli, "Layout conscious bus architecture synthesis
for deep submicron systems on chip," in Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition (DATE 2004),
Paris, France, 2004, pp. 108 -113.

 137

[79] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, "Reducing
power in high-performance microprocessors," in Proceedings of the Design

Automation Conference, 1998, pp. 732-737.

[80] L. G. Valiant and G. J. Brebner, "Universal schemes for parallel
communication," in Proceedings of the Thirteenth annual ACM symposium on

Theory of computing, Milwaukee, Wisconsin, USA, 1981, pp. 263-277.

[81] H.-S. Wang, L.-S. Peh, and S. Malik, "A power model for routers: modeling
Alpha 21364 and InfiniBand routers," IEEE Micro, 23 (1), 2003, pp. 26-35.

[82] T. Whitney and G. Neville-Neil, "SoC: Software, Hardware, Nightmare,
Bliss," ACM Queue, 1 (2), 2003, pp. 24-31.

[83] M. H. Wiggers, M. J. G. Bekooij, P. G. Jansen, and G. J. M. Smit, "Efficient
Computation of Buffer Capacities for Multi-Rate Real-Time Systems with
Back-Pressure," in Proceedings of the International Conference on Hardware-

Software Codesign and System Synthesis (CODES), Seoul, Korea, 2006, pp.

[84] D. Wiklund and L. Dake, "SoCBUS: switched network on chip for hard real
time embedded systems," in Proceedings of the International Parallel and

Distributed Processing Symposium (IPDPS'03), 2003, pp. 78-85.

[85] P. T. Wolkotte, G. J. M. Smit, and J. E. Becker, "Energy-efficient NoC for best
effort communication," in Proceedings of the 15th International Conference on

Field Programmable Logic and Applications (FPL 2005), 2005, pp. 197-202.

[86] P. T. Wolkotte, G. J. M. Smit, and G. K. Rauwerda, "An Energy-Efficient
Reconfigurable Circuit Switched Network-on-Chip," in Proceedings of the

19th IEEE International Parallel and Distributed Processing Symposium

(IPDPS'05), Denver, Colorado, USA, 2005, pp. 155-161.

[87] P. T. Wolkotte, G. J. M. Smit, and L. T. Smit, "Partitioning of a DRM
receiver," in Proceedings of the 9th International OFDM-Workshop, Dresden,
Germany, 2004, pp. 299-304.

[88] H. Zhang, V. George, and J. M. Rabaey, "Low-swing on-chip signaling
techniques: effectiveness and robustness," IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 8 (3), 2000, pp. 264 - 272.

Electronic sources

[89] ARM, "AMBA Specification," Rev. 2.0, 1999, http://www.arm.com/

[90] IBM, "The CoreConnect™ Bus Architecture," 1999, http://www.ibm.com/

[91] OCP-IP, "Opeen Corree Protocol Datasheet," 2004, http://www.ocpip.org/

[92] Semiconductor Industry Association, "International Technology Roadmap for
Semiconductors (ITRS)," 2002, http://public.itrs.net/

[93] Semiconductor Industry Association, "International Technology Roadmap for
Semiconductors (ITRS)," 2005, http://public.itrs.net/

 138

[94] Texas Instruments Inc., "TMS320DM6443 Digital Media System-on-Chip,"
Rev. C, 2006, http://www.ti.com

[95] VSIA, "On-Chip Bus Attributes Specification," Rev. 1, 2001,
http://www.vsi.org/

 139

Titles in the IPA Dissertation Series

J.O. Blanco, "The State Operator in Process
Algebra", Faculty of Mathematics and Computing
Science, TUE, 1996-01

A.M. Geerling, "Transformational Development of
Data-Parallel Algorithms", Faculty of Mathematics
and Computer Science, KUN, 1996-02

P.M. Achten, "Interactive Functional Programs:
Models, Methods, and Implementation", Faculty of
Mathematics and Computer Science, KUN, 1996-
03

M.G.A. Verhoeven, "Parallel Local Search",
Faculty of Mathematics and Computing Science,
TUE, 1996-04

M.H.G.K. Kesseler, "The Implementation of
Functional Languages on Parallel Machines with
Distrib. Memory", Faculty of Mathematics and
Computer Science, KUN, 1996-05

D. Alstein, "Distributed Algorithms for Hard Real-
Time Systems", Faculty of Mathematics and
Computing Science, TUE, 1996-06

J.H. Hoepman, "Communication, Synchronization,
and Fault-Tolerance", Faculty of Mathematics and
Computer Science, UvA, 1996-07

H. Doornbos, "Reductivity Arguments and
Program Construction", Faculty of Mathematics
and Computing Science, TUE, 1996-08

D. Turi, "Functorial Operational Semantics and its
Denotational Dual", Faculty of Mathematics and
Computer Science, VUA, 1996-09

A.M.G. Peeters, "Single-Rail Handshake Circuits",
Faculty of Mathematics and Computing Science,
TUE, 1996-10

N.W.A. Arends, "A Systems Engineering
Specification Formalism", Faculty of Mechanical
Engineering, TUE, 1996-11

P. Severi de Santiago, "Normalisation in Lambda
Calculus and its Relation to Type Inference",
Faculty of Mathematics and Computing Science,
TUE, 1996-12

D.R. Dams, "Abstract Interpretation and Partition
Refinement for Model Checking", Faculty of
Mathematics and Computing Science, TUE, 1996-
13

M.M. Bonsangue, "Topological Dualities in
Semantics", Faculty of Mathematics and Computer
Science, VUA, 1996-14

B.L.E. de Fluiter, "Algorithms for Graphs of Small
Treewidth", Faculty of Mathematics and Computer
Science, UU, 1997-01

W.T.M. Kars, "Process-algebraic Transformations
in Context", Faculty of Computer Science, UT,
1997-02

P.F. Hoogendijk, "A Generic Theory of Data
Types", Faculty of Mathematics and Computing
Science, TUE, 1997-03

T.D.L. Laan, "The Evolution of Type Theory in
Logic and Mathematics", Faculty of Mathematics
and Computing Science, TUE, 1997-04

C.J. Bloo, "Preservation of Termination for
Explicit Substitution", Faculty of Mathematics and
Computing Science, TUE, 1997-05

J.J. Vereijken, "Discrete-Time Process Algebra",
Faculty of Mathematics and Computing Science,
TUE, 1997-06

F.A.M. van den Beuken, "A Functional Approach
to Syntax and Typing", Faculty of Mathematics
and Informatics, KUN, 1997-07

A.W. Heerink, "Ins and Outs in Refusal Testing",
Faculty of Computer Science, UT, 1998-01

G. Naumoski and W. Alberts, "A Discrete-Event
Simulator for Systems Engineering", Faculty of
Mechanical Engineering, TUE, 1998-02

J. Verriet, "Scheduling with Communication for
Multiprocessor Computation", Faculty of
Mathematics and Computer Science, UU, 1998-03

J.S.H. van Gageldonk, "An Asynchronous Low-
Power 80C51 Microcontroller", Faculty of
Mathematics and Computing Science, TUE, 1998-
04

A.A. Basten, "In Terms of Nets: System Design
with Petri Nets and Process Algebra", Faculty of
Mathematics and Computing Science, TUE, 1998-
05

E. Voermans, "Inductive Datatypes with Laws and
Subtyping -- A Relational Model", Faculty of
Mathematics and Computing Science, TUE, 1999-
01

H. ter Doest, "Towards Probabilistic Unification-
based Parsing", Faculty of Computer Science, UT,
1999-02

J.P.L. Segers, "Algorithms for the Simulation of
Surface Processes", Faculty of Mathematics and
Computing Science, TUE, 1999-03

C.H.M. van Kemenade, "Recombinative
Evolutionary Search", Faculty of Mathematics and
Natural Sciences, UL, 1999-04

E.I. Barakova, "Learning Reliability: a Study on
Indecisiveness in Sample Selection", Faculty of
Mathematics and Natural Sciences, RUG, 1999-05

 140

M.P. Bodlaender, "Scheduler Optimization in Real-
Time Distributed Databases", Faculty of
Mathematics and Computing Science, TUE, 1999-
06

M.A. Reniers, "Message Sequence Chart: Syntax
and Semantics", Faculty of Mathematics and
Computing Science, TUE, 1999-07

J.P. Warners, "Nonlinear approaches to
satisfiability problems", Faculty of Mathematics
and Computing Science, TUE, 1999-08

J.M.T. Romijn, "Analysing Industrial Protocols
with Formal Methods", Faculty of Computer
Science, UT, 1999-09

P.R. D'Argenio, "Algebras and Automata for
Timed and Stochastic Systems", Faculty of
Computer Science, UT, 1999-10

G. Fabian, "A Language and Simulator for Hybrid
Systems", Faculty of Mechanical Engineering,
TUE, 1999-11

J. Zwanenburg, "Object-Oriented Concepts and
Proof Rules", Faculty of Mathematics and
Computing Science, TUE, 1999-12

R.S. Venema, "Aspects of an Integrated Neural
Prediction System", Faculty of Mathematics and
Natural Sciences, RUG, 1999-13

J. Saraiva, "A Purely Functional Implementation of
Attribute Grammars", Faculty of Mathematics and
Computer Science, UU, 1999-14

R. Schiefer, "Viper, A Visualisation Tool for
Parallel Program Construction", Faculty of
Mathematics and Computing Science, TUE, 1999-
15

K.M.M. de Leeuw, "Cryptology and Statecraft in
the Dutch Republic", Faculty of Mathematics and
Computer Science, UvA, 2000-01

T.E.J. Vos, "UNITY in Diversity. A stratified
approach to the verification of distributed
algorithms", Faculty of Mathematics and Computer
Science, UU, 2000-02

W. Mallon, "Theories and Tools for the Design of
Delay-Insensitive Communicating Processes",
Faculty of Mathematics and Natural Sciences,
RUG, 2000-03

W.O.D. Griffioen, "Studies in Computer Aided
Verification of Protocols", Faculty of Science,
KUN, 2000-04

P.H.F.M. Verhoeven, "The Design of the
MathSpad Editor", Faculty of Mathematics and
Computing Science, TUE, 2000-05

J. Fey, "Design of a Fruit Juice Blending and
Packaging Plant", Faculty of Mechanical
Engineering, TUE, 2000-06

M. Franssen, "Cocktail: A Tool for Deriving
Correct Programs", Faculty of Mathematics and
Computing Science, TUE, 2000-07

P.A. Olivier, "A Framework for Debugging
Heterogeneous Applications", Faculty of Natural
Sciences, Mathematics and Computer Science,
UvA, 2000-08

E. Saaman, "Another Formal Specification
Language", Faculty of Mathematics and Natural
Sciences, RUG, 2000-10

M. Jelasity, "The Shape of Evolutionary Search
Discovering and Representing Search Space
Structure", Faculty of Mathematics and Natural
Sciences, UL, 2001-01

R. Ahn, "Agents, Objects and Events a
computational approach to knowledge, observation
and communication", Faculty of Mathematics and
Computing Science, TU/e, 2001-02

M. Huisman, "Reasoning about Java programs in
higher order logic using PVS and Isabelle", Faculty
of Science, KUN, 2001-03

I.M.M.J. Reymen, "Improving Design Processes
through Structured Reflection", Faculty of
Mathematics and Computing Science, TU/e, 2001-
04

S.C.C. Blom, "Term Graph Rewriting: syntax and
semantics", Faculty of Sciences, Division of
Mathematics and Computer Science, VUA, 2001-
05

R. van Liere, "Studies in Interactive Visualization",
Faculty of Natural Sciences, Mathematics and
Computer Science, UvA, 2001-06

A.G. Engels, "Languages for Analysis and Testing
of Event Sequences", Faculty of Mathematics and
Computing Science, TU/e, 2001-07

J. Hage, "Structural Aspects of Switching Classes",
Faculty of Mathematics and Natural Sciences, UL,
2001-08

M.H. Lamers, "Neural Networks for Analysis of
Data in Environmental Epidemiology: A Case-
study into Acute Effects of Air Pollution
Episodes", Faculty of Mathematics and Natural
Sciences, UL, 2001-09

T.C. Ruys, "Towards Effective Model Checking",
Faculty of Computer Science, UT, 2001-10

D. Chkliaev, "Mechanical verification of
concurrency control and recovery protocols",
Faculty of Mathematics and Computing Science,
TU/e, 2001-11

M.D. Oostdijk, "Generation and presentation of
formal mathematical documents", Faculty of
Mathematics and Computing Science, TU/e, 2001-
12

A.T. Hofkamp, "Reactive machine control: A
simulation approach using χ", Faculty of
Mechanical Engineering, TU/e, 2001-13

D. Bosnacki, "Enhancing state space reduction
techniques for model checking", Faculty of

 141

Mathematics and Computing Science, TU/e, 2001-
14

M.C. van Wezel, "Neural Networks for Intelligent
Data Analysis: theoretical and experimental
aspects", Faculty of Mathematics and Natural
Sciences, UL, 2002-01

V. Bos and J.J.T. Kleijn, "Formal Specification and
Analysis of Industrial Systems", Faculty of
Mathematics and Computer Science and Faculty of
Mechanical Engineering, TU/e, 2002-02

T. Kuipers, "Techniques for Understanding Legacy
Software Systems", Faculty of Natural Sciences,
Mathematics and Computer Science, UvA, 2002-
03

S.P. Luttik, "Choice Quantification in Process
Algebra", Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA, 2002-
04

R.J. Willemen, "School Timetable Construction:
Algorithms and Complexity", Faculty of
Mathematics and Computer Science, TU/e, 2002-
05

M.I.A. Stoelinga, "Alea Jacta Est: Verification of
Probabilistic, Real-time and Parametric Systems",
Faculty of Science, Mathematics and Computer
Science, KUN, 2002-06

N. van Vugt, "Models of Molecular Computing",
Faculty of Mathematics and Natural Sciences, UL,
2002-07

A. Fehnker, "Citius, Vilius, Melius: Guiding and
Cost-Optimality in Model Checking of Timed and
Hybrid Systems", Faculty of Science, Mathematics
and Computer Science, KUN, 2002-08

R. van Stee, "On-line Scheduling and Bin
Packing", Faculty of Mathematics and Natural
Sciences, UL, 2002-09

D. Tauritz, "Adaptive Information Filtering:
Concepts and Algorithms", Faculty of Mathematics
and Natural Sciences, UL, 2002-10

M.B. van der Zwaag, "Models and Logics for
Process Algebra", Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA, 2002-
11

J.I. den Hartog, "Probabilistic Extensions of
Semantical Models", Faculty of Sciences, Division
of Mathematics and Computer Science, VUA,
2002-12

L. Moonen, "Exploring Software Systems", Faculty
of Natural Sciences, Mathematics, and Computer
Science, UvA, 2002-13

J.I. van Hemert, "Applying Evolutionary
Computation to Constraint Satisfaction and Data
Mining", Faculty of Mathematics and Natural
Sciences, UL, 2002-14

S. Andova, "Probabilistic Process Algebra",
Faculty of Mathematics and Computer Science,
TU/e, 2002-15

Y.S. Usenko, "Linearization in μCRL",
Faculty of Mathematics and Computer Science,
TU/e, 2002-16

J.J.D. Aerts, "Random Redundant Storage for
Video on Demand", Faculty of Mathematics and
Computer Science, TU/e, 2003-01

M. de Jonge, "To Reuse or To Be Reused:
Techniques for component composition and
construction", Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA, 2003-
02

J.M.W. Visser, "Generic Traversal over Typed
Source Code Representations", Faculty of Natural
Sciences, Mathematics, and Computer Science,
UvA, 2003-03

S.M. Bohte, "Spiking Neural Networks", Faculty of
Mathematics and Natural Sciences, UL, 2003-04

T.A.C. Willemse, "Semantics and Verification in
Process Algebras with Data and Timing", Faculty
of Mathematics and Computer Science, TU/e,
2003-05

S.V. Nedea, "Analysis and Simulations of Catalytic
Reactions", Faculty of Mathematics and Computer
Science, TU/e, 2003-06

M.E.M. Lijding, "Real-time Scheduling of Tertiary
Storage", Faculty of Electrical Engineering,
Mathematics & Computer Science, UT, 2003-07

H.P. Benz, "Casual Multimedia Process Annotation
-- CoMPAs", Faculty of Electrical Engineering,
Mathematics & Computer Science, UT, 2003-08

D. Distefano, "On Modelchecking the Dynamics of
Object-based Software: a Foundational Approach",
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT, 2003-09

M.H. ter Beek, "Team Automata -- A Formal
Approach to the Modeling of Collaboration
Between System Components", Faculty of
Mathematics and Natural Sciences, UL, 2003-10

D.J.P. Leijen, "The λ Abroad -- A
Functional Approach to Software Components",
Faculty of Mathematics and Computer Science,
UU, 2003-11

W.P.A.J. Michiels, "Performance Ratios for the
Differencing Method", Faculty of Mathematics and
Computer Science, TU/e, 2004-01

G.I. Jojgov, "Incomplete Proofs and Terms and
Their Use in Interactive Theorem Proving", Faculty
of Mathematics and Computer Science, TU/e,
2004-02

P. Frisco, "Theory of Molecular Computing --
Splicing and Membrane systems", Faculty of
Mathematics and Natural Sciences, UL, 2004-03

 142

S. Maneth, "Models of Tree Translation", Faculty
of Mathematics and Natural Sciences, UL, 2004-04

Y. Qian, "Data Synchronization and Browsing for
Home Environments", Faculty of Mathematics and
Computer Science and Faculty of Industrial
Design, TU/e, 2004-05

F. Bartels, "On Generalised Coinduction and
Probabilistic Specification Formats", Faculty of
Sciences, Division of Mathematics and Computer
Science, VUA, 2004-06

L. Cruz-Filipe, "Constructive Real Analysis: a
Type-Theoretical Formalization and Applications",
Faculty of Science, Mathematics and Computer
Science, KUN, 2004-07

E.H. Gerding, "Autonomous Agents in Bargaining
Games: An Evolutionary Investigation of
Fundamentals, Strategies, and Business
Applications", Faculty of Technology
Management, TU/e, 2004-08

N. Goga, "Control and Selection Techniques for
the Automated Testing of Reactive Systems",
Faculty of Mathematics and Computer Science,
TU/e, 2004-09

M. Niqui, "Formalising Exact Arithmetic:
Representations, Algorithms and Proofs", Faculty
of Science, Mathematics and Computer Science,
RU, 2004-10

A. Loh, "Exploring Generic Haskell", Faculty of
Mathematics and Computer Science, UU, 2004-11

I.C.M. Flinsenberg, "Route Planning Algorithms
for Car Navigation", Faculty of Mathematics and
Computer Science, TU/e, 2004-12

R.J. Bril, "Real-time Scheduling for Media
Processing Using Conditionally Guaranteed
Budgets", Faculty of Mathematics and Computer
Science, TU/e, 2004-13

J. Pang, "Formal Verification of Distributed
Systems", Faculty of Sciences, Division of
Mathematics and Computer Science, VUA, 2004-
14

F. Alkemade, "Evolutionary Agent-Based
Economics", Faculty of Technology Management,
TU/e, 2004-15

E.O. Dijk, "Indoor Ultrasonic Position Estimation
Using a Single Base Station", Faculty of
Mathematics and Computer Science, TU/e, 2004-
16

S.M. Orzan, "On Distributed Verification and
Verified Distribution", Faculty of Sciences,
Division of Mathematics and Computer Science,
VUA, 2004-17

M.M. Schrage, "Proxima - A Presentation-oriented
Editor for Structured Documents", Faculty of
Mathematics and Computer Science, UU, 2004-18

E. Eskenazi and A. Fyukov, "Quantitative
Prediction of Quality Attributes for Component-

Based Software Architectures", Faculty of
Mathematics and Computer Science, TU/e, 2004-
19

P.J.L. Cuijpers, "Hybrid Process Algebra", Faculty
of Mathematics and Computer Science, TU/e,
2004-20

N.J.M. van den Nieuwelaar, "Supervisory Machine
Control by Predictive-Reactive Scheduling",
Faculty of Mechanical Engineering, TU/e, 2004-21

E. Abraham, "An Assertional Proof System for
Multithreaded Java -Theory and Tool Support- ",
Faculty of Mathematics and Natural Sciences, UL,
2005-01

R. Ruimerman, "Modeling and Remodeling in
Bone Tissue", Faculty of Biomedical Engineering,
TU/e, 2005-02

C.N. Chong, "Experiments in Rights Control -
Expression and Enforcement", Faculty of Electrical
Engineering, Mathematics & Computer Science,
UT, 2005-03

H. Gao, "Design and Verification of Lock-free
Parallel Algorithms", Faculty of Mathematics and
Computing Sciences, RUG, 2005-04

H.M.A. van Beek, "Specification and Analysis of
Internet Applications", Faculty of Mathematics and
Computer Science, TU/e, 2005-05

M.T. Ionita, "Scenario-Based System Architecting
- A Systematic Approach to Developing Future-
Proof System Architectures", Faculty of
Mathematics and Computing Sciences, TU/e,
2005-06

G. Lenzini, "Integration of Analysis Techniques in
Security and Fault-Tolerance", Faculty of
Electrical Engineering, Mathematics & Computer
Science, UT, 2005-07

I. Kurtev, "Adaptability of Model
Transformations", Faculty of Electrical
Engineering, Mathematics & Computer Science,
UT, 2005-08

T. Wolle, "Computational Aspects of Treewidth -
Lower Bounds and Network Reliability", Faculty
of Science, UU, 2005-09

O. Tveretina, "Decision Procedures for Equality
Logic with Uninterpreted Functions", Faculty of
Mathematics and Computer Science, TU/e, 2005-
10

A.M.L. Liekens, "Evolution of Finite Populations
in Dynamic Environments", Faculty of Biomedical
Engineering, TU/e, 2005-11

J. Eggermont, "Data Mining using Genetic
Programming: Classification and Symbolic
Regression", Faculty of Mathematics and Natural
Sciences, UL, 2005-12

B.J. Heeren, "Top Quality Type Error Messages",
Faculty of Science, UU, 2005-13

 143

G.F. Frehse, "Compositional Verification of
Hybrid Systems using Simulation Relations",
Faculty of Science, Mathematics and Computer
Science, RU, 2005-14

M.R. Mousavi, "Structuring Structural Operational
Semantics", Faculty of Mathematics and Computer
Science, TU/e, 2005-15

A. Sokolova, "Coalgebraic Analysis of
Probabilistic Systems", Faculty of Mathematics
and Computer Science, TU/e, 2005-16

T. Gelsema, "Effective Models for the Structure of
pi-Calculus Processes with Replication", Faculty of
Mathematics and Natural Sciences, UL, 2005-17

P. Zoeteweij, "Composing Constraint Solvers",
Faculty of Natural Sciences, Mathematics, and
Computer Science, UvA, 2005-18

J.J. Vinju, "Analysis and Transformation of Source
Code by Parsing and Rewriting", Faculty of
Natural Sciences, Mathematics, and Computer
Science, UvA, 2005-19

M.Valero Espada, "Modal Abstraction and
Replication of Processes with Data", Faculty of
Sciences, Division of Mathematics and Computer
Science, VUA, 2005-20

A. Dijkstra, "Stepping through Haskell", Faculty of
Science, UU, 2005-21

Y.W. Law, "Key management and link-layer
security of wireless sensor networks: energy-
efficient attack and defense", Faculty of Electrical
Engineering, Mathematics & Computer Science,
UT, 2005-22

E. Dolstra, "The Purely Functional Software
Deployment Model", Faculty of Science, UU,
2006-01

R.J. Corin, "Analysis Models for Security
Protocols", Faculty of Electrical Engineering,
Mathematics & Computer Science, UT, 2006-02

P.R.A. Verbaan, "The Computational Complexity
of Evolving Systems", Faculty of Science, UU,
2006-03

K.L. Man and R.R.H. Schiffelers, "Formal
Specification and Analysis of Hybrid Systems",
Faculty of Mathematics and Computer Science and
Faculty of Mechanical Engineering, TU/e, 2006-04

M. Kyas, "Verifying OCL Specifications of UML
Models: Tool Support and Compositionality",
Faculty of Mathematics and Natural Sciences, UL,
2006-05

M. Hendriks, "Model Checking Timed Automata -
Techniques and Applications", Faculty of Science,
Mathematics and Computer Science, RU, 2006-06

J. Ketema, "Bohm-Like Trees for Rewriting",
Faculty of Sciences, VUA, 2006-07

C.-B. Breunesse, "On JML: topics in tool-assisted
verification of JML programs", Faculty of Science,
Mathematics and Computer Science, RU, 2006-08

B. Markvoort, "Towards Hybrid Molecular
Simulations", Faculty of Biomedical Engineering,
TU/e, 2006-09

S.G.R. Nijssen, "Mining Structured Data", Faculty
of Mathematics and Natural Sciences, UL, 2006-10

G. Russello, "Separation and Adaptation of
Concerns in a Shared Data Space", Faculty of
Mathematics and Computer Science, TU/e, 2006-
11

L. Cheung, "Reconciling Nondeterministic and
Probabilistic Choices", Faculty of Science,
Mathematics and Computer Science, RU, 2006-12

B. Badban, "Verification techniques for Extensions
of Equality Logic", Faculty of Sciences, Division
of Mathematics and Computer Science, VUA,
2006-13

A.J. Mooij, "Constructive formal methods and
protocol standardization", Faculty of Mathematics
and Computer Science, TU/e, 2006-14

T. Krilavicius, "Hybrid Techniques for Hybrid
Systems", Faculty of Electrical Engineering,
Mathematics & Computer Science, UT, 2006-15

M.E. Warnier, "Language Based Security for Java
and JML", Faculty of Science, Mathematics and
Computer Science, RU, 2006-16

V. Sundramoorthy, "At Home In Service
Discovery", Faculty of Electrical Engineering,
Mathematics & Computer Science, UT, 2006-17

B. Gebremichael, "Expressivity of Timed
Automata Models", Faculty of Science,
Mathematics and Computer Science, RU, 2006-18

L.C.M. van Gool, "Formalising Interface
Specifications", Faculty of Mathematics and
Computer Science, TU/e, 2006-19

C.J.F. Cremers, "Scyther - Semantics and
Verification of Security Protocols", Faculty of
Mathematics and Computer Science, TU/e, 2006-
20

J.V. Guillen Scholten, "Mobile Channels for
Exogenous Coordination of Distributed Systems:
Semantics, Implementation and Composition",
Faculty of Mathematics and Natural Sciences, UL,
2006-21

H.A. de Jong, "Flexible Heterogeneous Software
Systems", Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA, 2007-
01

N.K. Kavaldjiev, "A run-time reconfigurable
Network-on-Chip for streaming DSP applications",
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT, 2007-02

